hdu4283 区间dp

17 篇文章 0 订阅

http://acm.hdu.edu.cn/showproblem.php?pid=4283



Problem Description
  The TV shows such as You Are the One has been very popular. In order to meet the need of boys who are still single, TJUT hold the show itself. The show is hold in the Small hall, so it attract a lot of boys and girls. Now there are n boys enrolling in. At the beginning, the n boys stand in a row and go to the stage one by one. However, the director suddenly knows that very boy has a value of diaosi D, if the boy is k-th one go to the stage, the unhappiness of him will be (k-1)*D, because he has to wait for (k-1) people. Luckily, there is a dark room in the Small hall, so the director can put the boy into the dark room temporarily and let the boys behind his go to stage before him. For the dark room is very narrow, the boy who first get into dark room has to leave last. The director wants to change the order of boys by the dark room, so the summary of unhappiness will be least. Can you help him?
 

Input
  The first line contains a single integer T, the number of test cases.  For each case, the first line is n (0 < n <= 100)
  The next n line are n integer D1-Dn means the value of diaosi of boys (0 <= Di <= 100)
 

Output
  For each test case, output the least summary of unhappiness .
 

Sample Input
  
  
2    5 1 2 3 4 5 5 5 4 3 2 2
 

Sample Output
  
  
Case #1: 20 Case #2: 24
/**
hdu4283 区间dp
题目大意:一些屌丝排队进场,第k个进场的人后又k-1*a[i]的愤怒值,为了得到最小的愤怒值,可以利用一个栈来调整顺序,第i个人进栈可以让第i+1个人先
          行入场,对于栈里的元素必须是后进先出,问如何合理利用栈来以得到最小的愤怒值
解题思路:我们用dp[i][j]表示区间i~j之中的元素可得到的最小的愤怒值。对于i~j中的元素i我们然他第k个入场,那么其后面的k-1个元素就要先行入场,
          这是问题就变成了dp[i+1][i+k-1]和dp[i+k][j], 对于第i个元素的愤怒值为:(k-1)*a[i],而第i+k~j的愤怒值要加上k*(sum[j]-sum[i+1-1]);
          最后dp[1][n]就是答案
*/
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std;
const int maxn=105;
int n,a[maxn],sum[maxn],dp[105][105];

int main()
{
    int T,tt=0;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        memset(sum,0,sizeof(sum));
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            sum[i]=sum[i-1]+a[i];
        }
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=n;i++)
        {
            for(int j=i+1;j<=n;j++)
                dp[i][j]=0x3f3f3f;
        }
        for(int l=1;l<=n-1;l++)
        {
            for(int i=1;i<=n-l;i++)
            {
                int j=i+l;
                for(int k=i;k<=j;k++)
                {
                    dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k+1][j]+(k-i+1)*(sum[j]-sum[k])+(k-i)*a[i]);
                }
            }
        }
        printf("Case #%d: %d\n",++tt,dp[1][n]);
    }
    return 0;
}
/**
2
5
1
2
3
4
5
5
5
4
3
2
2
*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值