C# OnnxRuntime MPCount 人群计数
目录
说明
官网地址:https://github.com/Shimmer93/MPCount
代码实现参考:https://github.com/hpc203/MPCount-onnxrun
效果
C# OnnxRuntime MPCount 人群计数
模型信息
Model Properties
-------------------------
---------------------------------------------------------------
Inputs
-------------------------
name:input
tensor:Float[-1, 3, -1, -1]
---------------------------------------------------------------
Outputs
-------------------------
name:output
tensor:Float[-1, 1, -1, -1]
name:c
tensor:Float[-1, 1, -1, -1]
---------------------------------------------------------------
项目
代码
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;
namespace Onnx_Demo
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
string image_path = "";
string startupPath;
DateTime dt1 = DateTime.Now;
DateTime dt2 = DateTime.Now;
string model_path;
Mat image;
SessionOptions options;
InferenceSession onnx_session;
List<NamedOnnxValue> input_container;
int unit_size = 16;
int log_para = 1000;
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;
pictureBox1.Image = null;
image_path = ofd.FileName;
pictureBox1.Image = new Bitmap(image_path);
textBox1.Text = "";
image = new Mat(image_path);
pictureBox2.Image = null;
}
private void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return;
}
button2.Enabled = false;
pictureBox2.Image = null;
textBox1.Text = "";
Application.DoEvents();
//读图片
image = new Mat(image_path);
Mat x = new Mat();
int left = 0;
int top = 0;
int right = 0;
int bottom = 0;
Common.preprocess(unit_size,image, x, ref left, ref top, ref right, ref bottom);
int[] input_shape_ = new int[] { 1, 3, x.Rows, x.Cols };
x.ConvertTo(x, MatType.CV_32FC3, 1 / 127.5, -1.0);
float[] input_image = Common.ExtractMat(x);
x.Release();
Tensor<float> input_tensor = new DenseTensor<float>(input_image, input_shape_);
List<NamedOnnxValue> input_container2 = new List<NamedOnnxValue>
{
NamedOnnxValue.CreateFromTensor("input", input_tensor)
};
dt1 = DateTime.Now;
var result_infer = onnx_session.Run(input_container2).ToArray();
dt2 = DateTime.Now;
var ort_outputs = result_infer.ToArray();
ReadOnlySpan<int> out_shape = ort_outputs[0].AsTensor<float>().Dimensions;
int outHeight = out_shape[2];
int outWidth = out_shape[3];
float[] pred = ort_outputs[0].AsTensor<float>().ToArray();
Mat result = new Mat(outHeight, outWidth, MatType.CV_32FC1, pred);
Rect crop_roi = new Rect(left, top, outWidth - right - left, outHeight - top - bottom);
Mat result_map = Mat.Zeros(new OpenCvSharp.Size(outWidth, outHeight), MatType.CV_32FC1);
result.CopyTo(new Mat(result_map, crop_roi));
int people_count = (int)(Cv2.Sum(result_map)[0] / log_para);
Mat drawimg = Common.draw_result(image, result_map, people_count);
pictureBox2.Image = new Bitmap(drawimg.ToMemoryStream());
textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
button2.Enabled = true;
}
private void Form1_Load(object sender, EventArgs e)
{
startupPath = System.Windows.Forms.Application.StartupPath;
model_path = "model/MPCount_qnrf.onnx";
// 创建输出会话,用于输出模型读取信息
options = new SessionOptions();
options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
// 创建推理模型类,读取本地模型文件
onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
// 创建输入容器
input_container = new List<NamedOnnxValue>();
image_path = "test_img/0.jpg";
pictureBox1.Image = new Bitmap(image_path);
image = new Mat(image_path);
}
private void pictureBox1_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox1.Image);
}
private void pictureBox2_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox2.Image);
}
SaveFileDialog sdf = new SaveFileDialog();
private void button3_Click(object sender, EventArgs e)
{
if (pictureBox2.Image == null)
{
return;
}
Bitmap output = new Bitmap(pictureBox2.Image);
sdf.Title = "保存";
sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
if (sdf.ShowDialog() == DialogResult.OK)
{
switch (sdf.FilterIndex)
{
case 1:
{
output.Save(sdf.FileName, ImageFormat.Jpeg);
break;
}
case 2:
{
output.Save(sdf.FileName, ImageFormat.Png);
break;
}
case 3:
{
output.Save(sdf.FileName, ImageFormat.Bmp);
break;
}
case 4:
{
output.Save(sdf.FileName, ImageFormat.Emf);
break;
}
case 5:
{
output.Save(sdf.FileName, ImageFormat.Exif);
break;
}
case 6:
{
output.Save(sdf.FileName, ImageFormat.Gif);
break;
}
case 7:
{
output.Save(sdf.FileName, ImageFormat.Icon);
break;
}
case 8:
{
output.Save(sdf.FileName, ImageFormat.Tiff);
break;
}
case 9:
{
output.Save(sdf.FileName, ImageFormat.Wmf);
break;
}
}
MessageBox.Show("保存成功,位置:" + sdf.FileName);
}
}
}
}
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;
namespace Onnx_Demo
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
string image_path = "";
string startupPath;
DateTime dt1 = DateTime.Now;
DateTime dt2 = DateTime.Now;
string model_path;
Mat image;
SessionOptions options;
InferenceSession onnx_session;
List<NamedOnnxValue> input_container;
int unit_size = 16;
int log_para = 1000;
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;
pictureBox1.Image = null;
image_path = ofd.FileName;
pictureBox1.Image = new Bitmap(image_path);
textBox1.Text = "";
image = new Mat(image_path);
pictureBox2.Image = null;
}
private void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return;
}
button2.Enabled = false;
pictureBox2.Image = null;
textBox1.Text = "";
Application.DoEvents();
//读图片
image = new Mat(image_path);
Mat x = new Mat();
int left = 0;
int top = 0;
int right = 0;
int bottom = 0;
Common.preprocess(unit_size,image, x, ref left, ref top, ref right, ref bottom);
int[] input_shape_ = new int[] { 1, 3, x.Rows, x.Cols };
x.ConvertTo(x, MatType.CV_32FC3, 1 / 127.5, -1.0);
float[] input_image = Common.ExtractMat(x);
x.Release();
Tensor<float> input_tensor = new DenseTensor<float>(input_image, input_shape_);
List<NamedOnnxValue> input_container2 = new List<NamedOnnxValue>
{
NamedOnnxValue.CreateFromTensor("input", input_tensor)
};
dt1 = DateTime.Now;
var result_infer = onnx_session.Run(input_container2).ToArray();
dt2 = DateTime.Now;
var ort_outputs = result_infer.ToArray();
ReadOnlySpan<int> out_shape = ort_outputs[0].AsTensor<float>().Dimensions;
int outHeight = out_shape[2];
int outWidth = out_shape[3];
float[] pred = ort_outputs[0].AsTensor<float>().ToArray();
Mat result = new Mat(outHeight, outWidth, MatType.CV_32FC1, pred);
Rect crop_roi = new Rect(left, top, outWidth - right - left, outHeight - top - bottom);
Mat result_map = Mat.Zeros(new OpenCvSharp.Size(outWidth, outHeight), MatType.CV_32FC1);
result.CopyTo(new Mat(result_map, crop_roi));
int people_count = (int)(Cv2.Sum(result_map)[0] / log_para);
Mat drawimg = Common.draw_result(image, result_map, people_count);
pictureBox2.Image = new Bitmap(drawimg.ToMemoryStream());
textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
button2.Enabled = true;
}
private void Form1_Load(object sender, EventArgs e)
{
startupPath = System.Windows.Forms.Application.StartupPath;
model_path = "model/MPCount_qnrf.onnx";
// 创建输出会话,用于输出模型读取信息
options = new SessionOptions();
options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
// 创建推理模型类,读取本地模型文件
onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
// 创建输入容器
input_container = new List<NamedOnnxValue>();
image_path = "test_img/0.jpg";
pictureBox1.Image = new Bitmap(image_path);
image = new Mat(image_path);
}
private void pictureBox1_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox1.Image);
}
private void pictureBox2_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox2.Image);
}
SaveFileDialog sdf = new SaveFileDialog();
private void button3_Click(object sender, EventArgs e)
{
if (pictureBox2.Image == null)
{
return;
}
Bitmap output = new Bitmap(pictureBox2.Image);
sdf.Title = "保存";
sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
if (sdf.ShowDialog() == DialogResult.OK)
{
switch (sdf.FilterIndex)
{
case 1:
{
output.Save(sdf.FileName, ImageFormat.Jpeg);
break;
}
case 2:
{
output.Save(sdf.FileName, ImageFormat.Png);
break;
}
case 3:
{
output.Save(sdf.FileName, ImageFormat.Bmp);
break;
}
case 4:
{
output.Save(sdf.FileName, ImageFormat.Emf);
break;
}
case 5:
{
output.Save(sdf.FileName, ImageFormat.Exif);
break;
}
case 6:
{
output.Save(sdf.FileName, ImageFormat.Gif);
break;
}
case 7:
{
output.Save(sdf.FileName, ImageFormat.Icon);
break;
}
case 8:
{
output.Save(sdf.FileName, ImageFormat.Tiff);
break;
}
case 9:
{
output.Save(sdf.FileName, ImageFormat.Wmf);
break;
}
}
MessageBox.Show("保存成功,位置:" + sdf.FileName);
}
}
}
}