C# OnnxRuntime MPCount 人群计数

C# OnnxRuntime MPCount 人群计数

目录

说明

效果

模型信息

项目

代码

下载


说明

官网地址:https://github.com/Shimmer93/MPCount

代码实现参考:https://github.com/hpc203/MPCount-onnxrun

效果

C# OnnxRuntime MPCount 人群计数

模型信息

Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:input
tensor:Float[-1, 3, -1, -1]
---------------------------------------------------------------

Outputs
-------------------------
name:output
tensor:Float[-1, 1, -1, -1]
name:c
tensor:Float[-1, 1, -1, -1]
---------------------------------------------------------------

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;

namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        SessionOptions options;
        InferenceSession onnx_session;
        List<NamedOnnxValue> input_container;

        int unit_size = 16;
        int log_para = 1000;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";
            Application.DoEvents();

            //读图片
            image = new Mat(image_path);

            Mat x = new Mat();
            int left = 0;
            int top = 0;
            int right = 0;
            int bottom = 0;
            Common.preprocess(unit_size,image, x, ref left, ref top, ref right, ref bottom);

            int[] input_shape_ = new int[] { 1, 3, x.Rows, x.Cols };
            x.ConvertTo(x, MatType.CV_32FC3, 1 / 127.5, -1.0);

            float[] input_image = Common.ExtractMat(x);
            x.Release();

            Tensor<float> input_tensor = new DenseTensor<float>(input_image, input_shape_);
            List<NamedOnnxValue> input_container2 = new List<NamedOnnxValue>
                {
                    NamedOnnxValue.CreateFromTensor("input", input_tensor)
                };
            dt1 = DateTime.Now;
            var result_infer = onnx_session.Run(input_container2).ToArray();
            dt2 = DateTime.Now;

            var ort_outputs = result_infer.ToArray();
            ReadOnlySpan<int> out_shape = ort_outputs[0].AsTensor<float>().Dimensions;
            int outHeight = out_shape[2];
            int outWidth = out_shape[3];
            float[] pred = ort_outputs[0].AsTensor<float>().ToArray();

            Mat result = new Mat(outHeight, outWidth, MatType.CV_32FC1, pred);
            Rect crop_roi = new Rect(left, top, outWidth - right - left, outHeight - top - bottom);

            Mat result_map = Mat.Zeros(new OpenCvSharp.Size(outWidth, outHeight), MatType.CV_32FC1);
            result.CopyTo(new Mat(result_map, crop_roi));

            int people_count = (int)(Cv2.Sum(result_map)[0] / log_para);

            Mat drawimg = Common.draw_result(image, result_map, people_count);

            pictureBox2.Image = new Bitmap(drawimg.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";

            button2.Enabled = true;

        }

        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = System.Windows.Forms.Application.StartupPath;
            model_path = "model/MPCount_qnrf.onnx";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img/0.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);

        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        SaveFileDialog sdf = new SaveFileDialog();
        private void button3_Click(object sender, EventArgs e)
        {
            if (pictureBox2.Image == null)
            {
                return;
            }
            Bitmap output = new Bitmap(pictureBox2.Image);
            sdf.Title = "保存";
            sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
            if (sdf.ShowDialog() == DialogResult.OK)
            {
                switch (sdf.FilterIndex)
                {
                    case 1:
                        {
                            output.Save(sdf.FileName, ImageFormat.Jpeg);
                            break;
                        }
                    case 2:
                        {
                            output.Save(sdf.FileName, ImageFormat.Png);
                            break;
                        }
                    case 3:
                        {
                            output.Save(sdf.FileName, ImageFormat.Bmp);
                            break;
                        }
                    case 4:
                        {
                            output.Save(sdf.FileName, ImageFormat.Emf);
                            break;
                        }
                    case 5:
                        {
                            output.Save(sdf.FileName, ImageFormat.Exif);
                            break;
                        }
                    case 6:
                        {
                            output.Save(sdf.FileName, ImageFormat.Gif);
                            break;
                        }
                    case 7:
                        {
                            output.Save(sdf.FileName, ImageFormat.Icon);
                            break;
                        }

                    case 8:
                        {
                            output.Save(sdf.FileName, ImageFormat.Tiff);
                            break;
                        }
                    case 9:
                        {
                            output.Save(sdf.FileName, ImageFormat.Wmf);
                            break;
                        }
                }
                MessageBox.Show("保存成功,位置:" + sdf.FileName);
            }
        }
    }
}

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;

namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        SessionOptions options;
        InferenceSession onnx_session;
        List<NamedOnnxValue> input_container;

        int unit_size = 16;
        int log_para = 1000;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";
            Application.DoEvents();

            //读图片
            image = new Mat(image_path);

            Mat x = new Mat();
            int left = 0;
            int top = 0;
            int right = 0;
            int bottom = 0;
            Common.preprocess(unit_size,image, x, ref left, ref top, ref right, ref bottom);

            int[] input_shape_ = new int[] { 1, 3, x.Rows, x.Cols };
            x.ConvertTo(x, MatType.CV_32FC3, 1 / 127.5, -1.0);

            float[] input_image = Common.ExtractMat(x);
            x.Release();

            Tensor<float> input_tensor = new DenseTensor<float>(input_image, input_shape_);
            List<NamedOnnxValue> input_container2 = new List<NamedOnnxValue>
                {
                    NamedOnnxValue.CreateFromTensor("input", input_tensor)
                };
            dt1 = DateTime.Now;
            var result_infer = onnx_session.Run(input_container2).ToArray();
            dt2 = DateTime.Now;

            var ort_outputs = result_infer.ToArray();
            ReadOnlySpan<int> out_shape = ort_outputs[0].AsTensor<float>().Dimensions;
            int outHeight = out_shape[2];
            int outWidth = out_shape[3];
            float[] pred = ort_outputs[0].AsTensor<float>().ToArray();

            Mat result = new Mat(outHeight, outWidth, MatType.CV_32FC1, pred);
            Rect crop_roi = new Rect(left, top, outWidth - right - left, outHeight - top - bottom);

            Mat result_map = Mat.Zeros(new OpenCvSharp.Size(outWidth, outHeight), MatType.CV_32FC1);
            result.CopyTo(new Mat(result_map, crop_roi));

            int people_count = (int)(Cv2.Sum(result_map)[0] / log_para);

            Mat drawimg = Common.draw_result(image, result_map, people_count);

            pictureBox2.Image = new Bitmap(drawimg.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";

            button2.Enabled = true;

        }

        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = System.Windows.Forms.Application.StartupPath;
            model_path = "model/MPCount_qnrf.onnx";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img/0.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);

        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        SaveFileDialog sdf = new SaveFileDialog();
        private void button3_Click(object sender, EventArgs e)
        {
            if (pictureBox2.Image == null)
            {
                return;
            }
            Bitmap output = new Bitmap(pictureBox2.Image);
            sdf.Title = "保存";
            sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
            if (sdf.ShowDialog() == DialogResult.OK)
            {
                switch (sdf.FilterIndex)
                {
                    case 1:
                        {
                            output.Save(sdf.FileName, ImageFormat.Jpeg);
                            break;
                        }
                    case 2:
                        {
                            output.Save(sdf.FileName, ImageFormat.Png);
                            break;
                        }
                    case 3:
                        {
                            output.Save(sdf.FileName, ImageFormat.Bmp);
                            break;
                        }
                    case 4:
                        {
                            output.Save(sdf.FileName, ImageFormat.Emf);
                            break;
                        }
                    case 5:
                        {
                            output.Save(sdf.FileName, ImageFormat.Exif);
                            break;
                        }
                    case 6:
                        {
                            output.Save(sdf.FileName, ImageFormat.Gif);
                            break;
                        }
                    case 7:
                        {
                            output.Save(sdf.FileName, ImageFormat.Icon);
                            break;
                        }

                    case 8:
                        {
                            output.Save(sdf.FileName, ImageFormat.Tiff);
                            break;
                        }
                    case 9:
                        {
                            output.Save(sdf.FileName, ImageFormat.Wmf);
                            break;
                        }
                }
                MessageBox.Show("保存成功,位置:" + sdf.FileName);
            }
        }
    }
}

下载

源码下载

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天代码码天天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值