hdu5113 剪枝搜索

In mathematics, the four color theorem, or the four color map theorem, states that, given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color.
— Wikipedia, the free encyclopedia

In this problem, you have to solve the 4-color problem. Hey, I’m just joking.

You are asked to solve a similar problem:

Color an N × M chessboard with K colors numbered from 1 to K such that no two adjacent cells have the same color (two cells are adjacent if they share an edge). The i-th color should be used in exactly c i cells.

Matt hopes you can tell him a possible coloring.
 

Input
The first line contains only one integer T (1 ≤ T ≤ 5000), which indicates the number of test cases.

For each test case, the first line contains three integers: N, M, K (0 < N, M ≤ 5, 0 < K ≤ N × M ).

The second line contains K integers c i (c i > 0), denoting the number of cells where the i-th color should be used.

It’s guaranteed that c 1 + c 2 + · · · + c K = N × M .
 

Output
For each test case, the first line contains “Case #x:”, where x is the case number (starting from 1).

In the second line, output “NO” if there is no coloring satisfying the requirements. Otherwise, output “YES” in one line. Each of the following N lines contains M numbers seperated by single whitespace, denoting the color of the cells.

If there are multiple solutions, output any of them.
 

Sample Input
  
  
4 1 5 2 4 1 3 3 4 1 2 2 4 2 3 3 2 2 2 3 2 3 2 2 2
 

Sample Output
  
  
Case #1: NO Case #2: YES 4 3 4 2 1 2 4 3 4 Case #3: YES 1 2 3 2 3 1 Case #4: YES 1 2 2 3 3 1
题意:就是说给你一个矩阵,要你在里面填数字,这个数字的前后左右都不能和自己相同,第一行输入时m n k表示 m行,n列,k表示数据的个数;
然后第二行表示每个数据的个数;
如果能够把这些数据成功的放入矩阵那么就输出yes 再输出随便任意一种放的方法否则输出no
这里有个关键的剪枝 是 当剩余的格子向上取整的一半<小鱼任意一个剩下的数据的值 就直接退出,那么后面排数据肯定会有两个数据粘在一起;
下面看代码吧
代码:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
int n,m,k;
int map[6][6];
int a[100];
int dir[4][2]={1,0,-1,0,0,1,0,-1};
bool jude(int x,int y)
{
    if(x>=0&&x<n&&y>=0&&y<m) return 1;
    return 0;
}

int dfs(int count,int count1)
{
    if(count==n*m) return 1;

    int x=count/m;
    int y=count%m;
    for(int i=1;i<=k;i++)
        if(a[i]>(n*m-count+1)/2) return 0;//这里判断只能在这里判断在下面那个for判断会判超时,
        //因为还没有找到比剩余格子的一般多的a【i】;i前面会继续深搜,本来这里是不需要深搜了的。所以还是会超时,所以一定要在外面判断,下面;
    for(int i=1;i<=k;i++)
    {
    if(a[i]!=0)
      { int flag=0;
        for(int j=0;j<4;j++)
        {
            int xx=x+dir[j][0];
            int yy=y+dir[j][1];
            if(!jude(xx,yy)) continue;
           if(map[xx][yy]==i){  flag=1;break;}
        }

        if(!flag)
        {
            map[x][y]=i;
            a[i]--;
            if(dfs(count+1,count1-1)) return 1;
            a[i]++;
            map[x][y]=-1;
        }
      }
    }
    return 0;

}
void solve()
{    memset(map,-1,sizeof(map));
     if(dfs(0,n*m)){ printf("YES\n");
          for(int i=0;i<n;i++)
          {
              for(int j=0;j<m-1;j++)
               printf("%d ",map[i][j]);
             printf("%d\n",map[i][m-1]);
          }
          return ;
     }
         printf("NO\n");


}
int main()
{
    int t;
    scanf("%d",&t);
    int count=1;
    while(t--)
    {
        scanf("%d%d%d",&n,&m,&k);
        for(int i=1;i<=k;i++)
            scanf("%d",&a[i]);
        printf("Case #%d:\n",count++);
        solve();
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值