- 博客(3)
- 资源 (1)
- 收藏
- 关注
原创 用子样均值取代期望时,证明所构成的卡方分布的自由度为(n-1)
用子样均值取代期望时,证明所构成的卡方分布的自由度为(n-1)若子样xix_ixi~N(μ,σ2)N(\mu,\sigma^2)N(μ,σ2),且期望μ\muμ用子样均值xˉ\bar xxˉ取代时,会有子样无偏方差:σ^2=1n−1∑i=1n(xi−xˉ)2=1n−1VVT\hat{\sigma}^2=\frac{1}{n-1}\sum_{i=1}^{n}{(x_i-\bar x)^2}=\frac{1}{n-1}VV^Tσ^2=n−11∑i=1n(xi−xˉ)2=n−11VVT则:VVTσ
2021-11-10 21:56:09 1490
原创 2021-10-07
matlab 病态方程——奇异值截断法(杨文采研究员和王振杰博士论文)前言一、Hilbert矩阵matlab代码二、SVD截断奇异值解法三、杨文采研究员解法提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、Hilbert矩阵matlab代码二、SVD截断奇异值解法三、杨文采研究员解法前言**对于Hilbert矩阵,当n>10时,最小二乘法解与真实值[1,1,1,1,~,1]差别很大,原因在于Hilbert矩阵存在病态性,其法方程奇异值数量级相差较大。在数值分
2021-10-07 13:44:11 991
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人