用子样均值取代期望时,证明所构成的卡方分布的自由度为(n-1)

用子样均值取代期望时,证明所构成的卡方分布的自由度为(n-1)

若子样 x i x_i xi~ N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2),且期望 μ \mu μ用子样均值 x ˉ \bar x xˉ取代时,会有子样无偏方差:

σ ^ 2 = 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 = 1 n − 1 V V T \hat{\sigma}^2=\frac{1}{n-1}\sum_{i=1}^{n}{(x_i-\bar x)^2}=\frac{1}{n-1}VV^T σ^2=n11i=1n(xixˉ)2=n11VVT则:

V V T σ 2 = ( n − 1 ) σ ^ 2 σ 2 = ∑ i = 1 n ( x i − x ˉ ) 2 σ 2 ∼ χ 2 ( n − 1 ) \frac{VV^T}{\sigma^2}=\frac{(n-1)\hat{\sigma}^2}{\sigma^2}=\sum_{i=1}^{n}{\frac{(x_i-\bar x)^2}{\sigma^2}}\thicksim\chi^2(n-1) σ2VVT=σ2(n1)σ^2=i=1nσ2(xixˉ)2χ2(n1)

∑ i = 1 n ( x i − x ˉ ) 2 σ 2 = 1 σ 2 ( ∑ i = 1 n x i 2 − n x ˉ 2 ) \sum_{i=1}^{n}{\frac{(x_i-\bar x)^2}{\sigma^2}}=\frac{1}{\sigma^2}\begin{pmatrix} \sum_{i=1}^{n}{x_i^2-n\bar x^2} \end{pmatrix} i=1nσ2(xixˉ)2=σ21(i=1nxi2nxˉ2)

证明上式:

Y = [ y 1 ⋯ y n − 1 y n ] = [ 1 1 ∗ 2 − 1 1 ∗ 2 0 ⋯ 0 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 1 n ∗ ( n − 1 ) 1 n ∗ ( n − 1 ) 1 n ∗ ( n − 1 ) 1 n ∗ ( n − 1 ) 1 n ∗ ( n − 1 ) − ( n − 1 ) n ∗ ( n − 1 ) 1 n 1 n 1 n 1 n 1 n 1 n ] Y=\begin{bmatrix} y_1 \\\cdots \\ y_{n-1}\\ y_{n}\end{bmatrix}=\begin{bmatrix} \frac{1}{\sqrt{1*2}} & \frac{-1}{\sqrt{1*2}} & 0 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \frac{1}{\sqrt{n*(n-1)}} & \frac{1}{\sqrt{n*(n-1)}} & \frac{1}{\sqrt{n*(n-1)}} & \frac{1}{\sqrt{n*(n-1)}} & \frac{1}{\sqrt{n*(n-1)}} & \frac{-(n-1)}{\sqrt{n*(n-1)}} \\ \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} \end{bmatrix} Y=y1yn1yn=12 1n(n1) 1n 112 1n(n1) 1n 10n(n1) 1n 1n(n1) 1n 10n(n1) 1n 10n(n1) (n1)n 1 X X X
上述 X X X左乘的系数矩阵设为 A A A矩阵, A A A为正交阵,满足 A T A = I A^TA=I ATA=I,运用误差传播定律可知,, y i y_i yi~ N ( 0 , σ 2 ) N(0,\sigma^2) N(0,σ2),且互独立, i = 1 , 2 , ⋯ , n − 1 i=1,2,\cdots,n-1 i=12n1,且 y n ∼ N ( n μ , σ 2 ) y_n \thicksim N(\sqrt{n}\mu,\sigma^2) ynN(n μ,σ2) y n 2 = n x ˉ 2 y_n^2=n\bar x^2 yn2=nxˉ2

∑ i = 1 n x 2 = X T X \sum_{i=1}^{n} {x^2}=X^TX i=1nx2=XTX

Y T Y = ( A X ) T ( A X ) = X T A A X = X T X = ∑ i = 1 n x 2 = ∑ i = 1 n y 2 Y^TY=(AX)^T(AX)=X^TAAX=X^TX=\sum_{i=1}^{n} {x^2}=\sum_{i=1}^{n} {y^2} YTY=(AX)T(AX)=XTAAX=XTX=i=1nx2=i=1ny2

V V T σ 2 = 1 σ 2 ∑ i = 1 n ( x i 2 − n x ˉ 2 ) = 1 σ 2 ∑ i = 1 n ( y i 2 − n x ˉ 2 ) = 1 σ 2 ∑ i = 1 n ( y i 2 − y n 2 ) = 1 σ 2 ∑ i = 1 n − 1 ( y i 2 ) ∼ χ 2 ( n − 1 ) \frac{VV^T}{\sigma^2}=\frac{1}{\sigma^2}\sum_{i=1}^{n}{(x_i^2-n\bar x^2)}=\frac{1}{\sigma^2}\sum_{i=1}^{n}{(y_i^2-n\bar x^2)}=\frac{1}{\sigma^2}\sum_{i=1}^{n}{(y_i^2-y_n^2)}=\frac{1}{\sigma^2}\sum_{i=1}^{n-1}{(y_i^2)}\thicksim \chi^2(n-1) σ2VVT=σ21i=1n(xi2nxˉ2)=σ21i=1n(yi2nxˉ2)=σ21i=1n(yi2yn2)=σ21i=1n1(yi2)χ2(n1)

完美得证!

这是我大二时学习概率论时的疑惑,以上证明过程用到了测绘专业的知识证明,下午看到时醍醐灌顶,特此记录

参考资料:
(1)王穗辉老师的测量平差ppt
(2)第一次用Letax编辑公式,参考了这个博客 https://blog.csdn.net/weixin_44244154/article/details/104722239

### 关于分布自由度 分布是一种重要的概率分布,在统计学中有广泛应用。它描述了一组独立的标准正态随机变量平和的分布特性。 #### 分布的定义 假设 \( X_1, X_2, \ldots, X_n \) 是一组相互独立且服从标准正态分布 \( N(0, 1) \) 的随机变量,则这些随机变量的平和可以表示为: \[ \chi^2 = X_1^2 + X_2^2 + \cdots + X_n^2 \] 该随机变量所服从的分布即为 **分布**,记作 \( \chi^2(n) \)[^4]。其中,\( n \) 表示自由度。 #### 自由度的意义 自由度是指参与求和的独立标准正态随机变量的数量。对于上述定义中的 \( \chi^2 \),如果共有 \( n \) 个独立的标准正态随机变量,则对应的卡分布具有 \( n \)自由度[^4]。 #### 概率密度函数 分布的概率密度函数形式如下: \[ f(x; n) = \begin{cases} \frac{(x)^{\frac{n}{2}-1} e^{-\frac{x}{2}}}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)}, & x > 0 \\ 0, & x \leq 0, \end{cases} \] 其中 \( \Gamma(z) \) 是伽马函数。随着自由度 \( n \) 增加,分布逐渐趋于对称并接近正态分布。 #### 使用 Python 实现分布计算 以下是通过 Python 和 SciPy 库实现分布概率密度函数的一个简单例子: ```python from scipy.stats import chi2 import numpy as np def chi_square_pdf(x_values, degrees_of_freedom): """ 计算给定自由度的卡分布概率密度 """ pdf_values = chi2.pdf(x_values, df=degrees_of_freedom) return pdf_values # 示例输入 x_points = np.linspace(0, 20, 100) # 定义区间 [0, 20], 取 100 个点 df = 5 # 设定自由度为 5 # 调用函数 y_values = chi_square_pdf(x_points, df) print(y_values[:10]) # 输出前十个值作为示例 ``` 此代码片段展示了如何利用 `scipy.stats.chi2` 来获取不同自由度分布的概率密度值。 --- ### §相关问题§ 1. 如何理解分布在实际数据分析中的作用? 2. 当样本量增大分布会呈现怎样的变化趋势? 3. 如果已知某数据集符合分布,能否估计其自由度?具体法是什么? 4. 检验中使用的临界值是如何基于分布来确定的? 5. 在 MATLAB 中调用 `chi2pdf(Z,k)` 函数的具体应用场景有哪些?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值