CGAffineTransform定义
UIView
的transform
属性是一个CGAffineTransform
类型,用于在二维空间做旋转,缩放和平移。CGAffineTransform
是一个可以和二维空间向量(例如CGPoint
)做乘法的3X2的矩阵。称为仿射变换,“仿射”的意思是无论变换矩阵用什么值,图层中平行的两条线在变换之后任然保持平行”。
官方定义:
struct CGAffineTransform {
CGFloat a, b, c, d;
CGFloat tx, ty;
};
虽然结构体中只有a
,b
,c
,d
,tx
,ty
6个参数,但其实还有3个固定的参数[0,0,1]来组成3x3的矩阵。
如下图所示:
x' = a*x + c*y + tx y' = x*b + y*d + ty
向量的变换
图像上每个点的位置可以看成一个向量n维向量,取决于图像的空间。所以对图像的变换可以等价于对向量的变换,研究向量的变换可以让我们更直观的了解图像变换的原理 1. 向量的平移(对坐标系内某点得移动)2. 向量的缩放 X饭方向缩放a倍,Y方向缩放b倍,则有3. 向量的旋转 二位平面的向量旋转,即可以表示为三维空间的向量绕Z轴的旋转 如图:
将向量x在平面X-Y内绕原点旋转B,假设向量x的模为R,则根据三角函数的知识得,旋转后的向量为用矩阵表达即为
齐次坐标
齐次坐标就是将一个原本是n维的向量用一个n+1维向量来表示,例如,二维点(x,y)的齐次坐标表示为(hx,hy,h)。由此可以看出,一个向量的齐次表示是不唯一的,齐次坐标的h取不同的值都表示的是同一个点,比如齐次坐标(8,4,2)、(4,2,1)表示的都是二维点(4,2)。许多图形应用涉及到几何变换,主要包括平移、旋转、缩放。以矩阵表达式来计算这些变换时,平移是矩阵相加,旋转和缩放则是矩阵相乘,综合起来可以表示为p' = p *m1+ m2(注:因为习惯的原因,实际使用时一般使用变化矩阵左乘向量)(m1旋转缩放矩阵, m2为平移矩阵, p为原向量 ,p'为变换后的向量)。引入齐次坐标的目的主要是合并矩阵运算中的乘法和加法
所以2D变换的矩阵,就是刚开始的那个3行3列的矩阵。对上述方法进行拓展,我们很容易得出三维空间的变换矩阵
identity矩阵
/* The identity transform: [ 1 0 0 1 0 0 ]. */
CG_EXTERN const CGAffineTransform CGAffineTransformIdentity
CG_AVAILABLE_STARTING(__MAC_10_0, __IPHONE_2_0);
identity矩阵可以表示为
CGAffineTransformMakeTranslation方法
/* Return a transform which translates by `(tx, ty)':
t' = [ 1 0 0 1 tx ty ] */
CG_EXTERN CGAffineTransform CGAffineTransformMakeTranslation(CGFloat tx,
CGFloat ty) CG_AVAILABLE_STARTING(__MAC_10_0, __IPHONE_2_0);
CGAffineTransformMakeTranslation
是一个进行平移的方法,根据注释得到的矩阵为
CGAffineTransformMakeScale方法
/* Return a transform which scales by `(sx, sy)':
t' = [ sx 0 0 sy 0 0 ] */
CG_EXTERN CGAffineTransform CGAffineTransformMakeScale(CGFloat sx, CGFloat sy)
CG_AVAILABLE_STARTING(__MAC_10_0, __IPHONE_2_0);
CGAffineTransformMakeScale
是一个进行缩放的方法,根据注释得到的矩阵为
CGAffineTransformMakeRotation方法
/* Return a transform which rotates by `angle' radians:
t' = [ cos(angle) sin(angle) -sin(angle) cos(angle) 0 0 ] */
CG_EXTERN CGAffineTransform CGAffineTransformMakeRotation(CGFloat angle)
CG_AVAILABLE_STARTING(__MAC_10_0, __IPHONE_2_0);
CGAffineTransformMakeRotation
是一个进行旋转的方法,根据注释得到的矩阵为