python中的字典类型转化为bytes类型,及base64编码中“”双引号和‘’单引号编码结果不同

本文详细解析了如何使用Python将字典转换为Base64编码,包括不同方法下编码结果的差异,以及如何避免在转换过程中出现的空格问题。通过对比三种不同的转换方式,阐述了字符串转bytes时的常见陷阱,并提供了有效的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import base64
import json
1.
a={"Vod":{"userData":"{}".format("e42e6dedf7a5a3fd19689aeb74bb1605")}}
r=bytes('{}'.format(a),'utf-8')
print(r)   #b"{'Vod': {'userData': 'e42e6dedf7a5a3fd19689aeb74bb1605'}}"

base64.b64encode(r).decode('utf-8')  #'eydWb2QnOiB7J3VzZXJEYXRhJzogJ2U0MmU2ZGVkZjdhNWEzZmQxOTY4OWFlYjc0YmIxNjA1J319'

2.

a={"Vod":{"userData":"{}".format("e42e6dedf7a5a3fd19689aeb74bb1605")}}

base64.b64encode(json.dumps(a).replace(' ','').encode('utf-8')).decode('utf-8')

#'eyJWb2QiOnsidXNlckRhdGEiOiJlNDJlNmRlZGY3YTVhM2ZkMTk2ODlhZWI3NGJiMTYwNSJ9fQ=='

3.

a=b'{"Vod":{"userData":"e42e6dedf7a5a3fd19689aeb74bb1605"}}'

base64.b64encode(a).decode('utf-8')

#'eyJWb2QiOnsidXNlckRhdGEiOiJlNDJlNmRlZGY3YTVhM2ZkMTk2ODlhZWI3NGJiMTYwNSJ9fQ=='

字符串转化为bytes的坑,在转化的时候非常聪明地加了空格,导致三次的base64编码结果不一样,用字符串中的replace将空格替换掉,字符串转化可以用bytes(json.dumps({"lw":"{}".formt("1314")}),'utf-8')或者json.dumps({"lw":"{}".formt("1314")}).encode('utf-8')

字典用str转化成bytes时生成的是单引号,用json.dumps()生成的json格式是双引号

<think>我们有一个任务:验证CSV数据签名并过滤未被篡改的个人信息。具体来说,我们需要使用公钥验证data.csv中每条数据的签名,匹配data-sign.csv,并生成一个新的CSV文件,该文件仅包含未被篡改的数据。根据引用[1]引用[2],我们知道数字签名用于验证数据的完整性发送方的身份。通常,数字签名的验证过程包括:1.获取原始数据(这里可能是个人信息)签名。2.使用公钥对签名进行解密,得到签名的哈希值。3.对原始数据进行哈希计算,得到一个新的哈希值。4.比较两个哈希值是否相同。如果相同,则数据未被篡改;否则,数据被篡改。我们有两个CSV文件: -data.csv:包含个人信息(如姓名、年龄等)每条数据对应的签名(可能存储在另一个文件中?注意题目中说的是匹配data-sign.csv)。- data-sign.csv:存储了数据的签名。但具体格式未知,需要假设。题目要求:使用公钥验证data.csv中每条数据的签名,匹配data-sign.csv。这里可能意味着data.csv中不包含签名,而签名在data-sign.csv中,我们需要根据某个键(如数据ID)将两个文件关联起来。步骤:1.读取data.csv文件,其中包含个人信息(假设每条数据有一个唯一标识,如id)。2.读取data-sign.csv文件,其中包含每条数据的签名(假设有数据id对应的签名)。3.读取公钥(公钥应该以某种方式提供,比如文件、字符串等,题目未说明,我们假设公钥已经以PEM格式存储在文件中,如public_key.pem)。4.对于data.csv中的每条数据:a.根据唯一标识(如id)在data-sign.csv中找到对应的签名。b.将这条数据(排除签名部分)按照一定的格式(如字符串拼接)进行组织(注意:必须与生成签名时的格式一致,否则验证会失败)。c.使用公钥对签名进行验证:即用公钥解密签名得到哈希值,然后计算数据的哈希值,比较两者是否一致。5.如果验证通过,则将该条数据写入新的CSV文件(只包含未被篡改的数据)。注意:数据在签名时通常会被序列化为一个字符串(例如,将各个字段按固定顺序拼接,或者换为JSON字符串等)。我们需要知道原始数据在签名时是如何组织的。如果不知道,可能需要根据实际情况调整。由于题目没有给出具体的CSV格式签名生成方式,我们假设如下:-data.csv格式:id,name,age,...(其他字段)- data-sign.csv格式:id,signature并且假设在生成签名时,是将data.csv中除id外的其他字段(或包括id?)按照一定顺序拼接成字符串,然后计算哈希并签名。但为了安全,通常签名会包括所有重要字段。这里我们假设签名时使用的字符串是:将每个字段的值按顺序用逗号拼接(但注意,这样可能会有歧义,比如字段内含有逗号)。因此,更安全的做法是使用一种无歧义的序列化方式(如JSON)。但题目没有说明,我们只能按最简单的情况处理。另一种可能是:在生成签名时,是对整个数据记录(包括id)进行哈希签名。因此,我们假设在验证时,需要将data.csv中的一条记录(不包括签名)按照与生成签名时相同的格式换为字符串,然后验证。由于实际情况可能复杂,我们这里假设数据在签名时是使用如下格式的字符串:f"{id},{name},{age},..."即用逗号分隔的字段值,与CSV中的一行(不包括签名)相同?但注意,data.csv中可能不包含签名,所以就是原始的行(但要去掉换行符?)。然而,在生成签名时,通常不会包括CSV行尾的换行符,所以我们需要小心。因此,我们假设签名是对原始数据记录(不包括签名列)的字符串表示(即CSV中的一行,但去掉行尾换行符)进行签名。但注意,如果data.csv中原本就有多列,那么我们在验证时,需要将这一行(不包括签名列)作为原始数据。而签名列在data-sign.csv中,所以data.csv中不应该有签名列。所以,我们假设:data.csv:包含数据记录,每行一条记录,字段以逗号分隔,例如:id1,Alice,30,...id2,Bob,25,...data-sign.csv:每行包含一个id对应的签名,例如:id1,signature1id2,signature2步骤细化:1.读取公钥文件(public_key.pem)获取公钥。2.读取data.csv,将其解析为字典列表,每个字典代表一条记录,键为列名,值为对应的值。3.读取data-sign.csv,将其解析为一个字典,其中键为id,值为签名(字符串)。4.遍历data.csv的每条记录:a.从记录中获取id。b.根据id在data-sign.csv的字典中查找签名,如果找不到则跳过(或视为无效)。c.将当前记录(除了id字段?不,应该包括所有字段)换为字符串。注意:换方式必须与签名时一致。我们假设签名时是将该记录的所有字段值(按照CSV文件中的列顺序)用逗号连接起来,形成一个字符串(不包括行尾换行符)。例如:记录为{'id':'id1','name':'Alice','age':'30'},则字符串为"id1,Alice,30"(注意:这里年龄是整数,但在CSV中读取出来可能是字符串,所以按字符串处理)。d.使用公钥验证该字符串的签名(即data-sign.csv中对应的签名)。e.如果验证成功,则将该记录写入新的CSV文件;否则,跳过。关于签名的验证,我们可以使用Python的cryptography库。具体步骤:-加载公钥。-将签名(通常是Base64编码的字符串)解码为字节。-使用公钥验证:对原始数据字符串进行哈希(如SHA256),然后用公钥验证签名。注意:签名算法通常使用RSA或ECDSA。这里我们假设使用RSAPKCS#1v1.5或PSS,但题目未说明。为通用性,我们假设使用RSAPKCS#1v1.5。代码步骤:1.导入必要的库:csv, cryptography2.读取公钥3.读取两个CSV文件4.将data-sign.csv的内容存储为字典(id->signature)5.创建一个新的CSV文件用于写入未被篡改的数据6.遍历data.csv的每一行(记录):id =记录中的id字段如果id不在data-sign.csv的字典中,跳过(或记录错误)否则,获取签名(base64解码)构造要验证的字符串:将当前记录的所有字段值(按照原始列顺序)用逗号连接成一个字符串(注意:不要包含列名,只要值,并且顺序要与签名时一致)使用公钥签名验证这个字符串如果验证成功,将该记录写入新的CSV文件注意:由于CSV文件中可能包含任意字段,我们不知道列的顺序。在签名时,列的顺序很重要。因此,我们假设在生成签名时,列的顺序就是data.csv文件中的列顺序。所以,我们在读取data.csv时,需要保留列的顺序,然后按照相同的顺序拼接字段值。实现保留列顺序:我们可以使用csv.DictReader读取data.csv,它有一个fieldnames属性,表示列的顺序。然后,对于每一行,我们可以按照fieldnames的顺序获取字段值。因此,步骤调整为:-读取data.csv时,使用DictReader,并记录fieldnames。-在写入新的CSV文件时,使用相同的fieldnames作为表头。-对于每一行,按照fieldnames的顺序,将每个字段的值取出来,然后用逗号拼接(注意:这个字符串用于验证,而写入新文件时,我们直接写入整行)。但是,验证字符串的构造:我们不需要重新拼接整个行,因为原始行(在文件中)就是由这些值按顺序用逗号分隔的。但是,当我们用DictReader读取时,原始行已经被解析成字典,原始行信息丢失(比如引号处理、空格等)。因此,为了精确还原签名字符串,我们需要在读取data.csv时,同时以字符串形式保留每一行(去掉换行符),然后解析成字典。这样,用于签名的字符串就是原始行(去掉换行符)。但是,这样有一个问题:如果data-sign.csv中的签名是基于原始行的,那么我们可以直接使用原始行进行验证,而不需要解析后再拼接。因此,更可靠的方法:在读取data.csv时,我们同时读取每一行的原始字符串(去掉换行符),然后解析成字典(用于后续写入)。这样,验证时直接使用原始字符串(即该行字符串)即可。所以,我们可以:-使用csv.reader读取data.csv,同时保留原始行(用逗号分隔的字符串),并同时解析成字典(但这样需要列名)。或者,我们可以用普通reader读取,然后同时保存行字符串解析后的字典。具体:withopen('data.csv', 'r')as f:reader =csv.reader(f)headers =next(reader)#第一行是列名forrow inreader:#row是一个列表,代表每个字段的值line_str =','.join(row)#这样会丢失原始行中的引号?所以不一定准确#所以,我们直接读取原始行#但是,在读取之前,我们需要知道原始行因此,我们可以这样:withopen('data.csv', 'r')as f:#先读取列名行header_line= next(f)#字符串,包括换行符headers =header_line.strip().split(',')#简单分割,但可能不准确,因为字段内可能有逗号#所以,还是用csv.reader来读取,但无法直接获取原始行考虑到复杂性,我们假设CSV文件中没有包含逗号的字段(或者所有字段都用双引号括起来,这样csv.reader可以正确处理)。但实际上,我们无法确定。因此,我们采用以下方法:方法1:使用csv.reader读取每一行,然后用csv.writer将这一行写回去,形成一个标准化的字符串(这样可能会改变原始格式,比如引号,但字段内容不变)。但这样可能签名时的原始字符串不同。方法2:在生成签名时,是对字段值进行拼接(不包含引号),那么我们就按照字段值列表用逗号拼接(不包含引号)。这样,即使原始CSV有引号,我们也不考虑。但这样可能会与签名时不一致。由于题目没有给出具体签名生成方式,我们只能假设:签名时使用的是字段值的简单逗号拼接(无引号)。因此,我们按照以下方式构造验证字符串:s =','.join([value1, value2,...])但是,这样会有一个问题:如果某个字段值本身包含逗号,那么拼接后就会多出逗号,导致验证失败。所以,我们假设字段值中不包含逗号(或者签名时使用的是其他方式,如JSON)。鉴于题目要求不明确,我们采用以下折中方案:-假设data.csv中的字段值不包含逗号(简单情况)。-按照字段顺序用逗号拼接。如果实际情况复杂,可能需要调整。另外,签名通常是二进制数据,为了方便存储在CSV中,通常使用Base64编码。因此,在data-sign.csv中的签名是Base64字符串,我们需要将其解码为字节。代码实现:步骤:1.加载公钥2.读取data-sign.csv,存储为字典:{id:signature_base64}->然后签名需要base64解码3.读取data.csv,使用csv.DictReader,这样我们可以通过字段名访问,同时保留列顺序(通过DictReader的fieldnames属性)4.打开输出文件,使用csv.DictWriter,写入表头5.遍历data.csv的每一行(记录):a.获取id字段的值(假设每行都有id字段)b.在data-sign字典中查找该id的签名,如果找不到,跳过(或记录错误)c.构造验证字符串:按照fieldnames的顺序(跳过id?不,包括所有字段),将每个字段的值取出来(注意:如果字段值为空,则用空字符串),然后用逗号拼接成一个字符串。d.对验证字符串进行编码为字节),然后使用公钥验证签名(签名是base64解码后的字节)e.如果验证成功,则将该行写入输出文件。注意:验证字符串的构造必须与签名时完全一致(包括字段顺序、是否包含空格等)。因此,我们按照表头顺序,并且使用字段的原始值(从DictReader读取的字符串值)。关于签名验证的代码示例(使用cryptography库):from cryptography.hazmat.primitivesimport hashesfromcryptography.hazmat.primitives.asymmetric importpaddingfromcryptography.hazmat.primitives importserializationfrom cryptography.exceptions importInvalidSignatureimport base64#加载公钥with open("public_key.pem","rb") askey_file:public_key= serialization.load_pem_public_key(key_file.read())#验证函数def verify_signature(public_key, message, signature):try:public_key.verify(signature,message,padding.PKCS1v15(),hashes.SHA256())returnTrueexceptInvalidSignature:return False注意:签名算法需要与生成签名时一致。这里我们假设使用PKCS#1v1.5填充SHA256哈希。如果使用其他算法(如PSS),则需要调整。由于题目没有说明,我们按最常见的PKCS#1v1.5处理。现在,我们编写代码框架:注意:我们假设公钥文件为public_key.pem,data.csvdata-sign.csv在当前目录。代码结构:1.导入模块2.定义函数:加载公钥、验证签名3.读取data-sign.csv到字典4.读取data.csv,并处理每一行5.创建输出文件但是,我们还需要注意:data.csv中的id字段data-sign.csv中的id字段要匹配。假设data-sign.csv有两列:第一列是id,第二列是签名(base64字符串)。代码示例:</think>要验证CSV数据签名并过滤未被篡改的个人信息,需使用公钥验证`data.csv`中每条数据的签名(匹配`data-sign.csv`),生成仅包含有效数据的新CSV文件。以下是完整解决方案: ### 解决方案步骤 1. **数据准备** - `data.csv`:存储个人信息(如ID、姓名、年龄等) - `data-sign.csv`:存储每条数据的签名(Base64编码) - `public_key.pem`:PEM格式的公钥文件 2. **签名验证原理** - 对`data.csv`中的每条数据,用公钥解密`data-sign.csv`中的对应签名,得到原始哈希值 - 重新计算该条数据的哈希值(SHA256) - 比较两个哈希值: - 相同 ⇒ 数据未被篡改 - 不同 ⇒ 数据被篡改(丢弃) 3. **核心代码实现** ```python import csv import hashlib import base64 from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives.asymmetric import padding from cryptography.hazmat.primitives.serialization import load_pem_public_key from cryptography.exceptions import InvalidSignature def verify_data(public_key_path, data_csv, sign_csv, output_csv): # 加载公钥 with open(public_key_path, "rb") as key_file: public_key = load_pem_public_key(key_file.read()) # 读取签名数据到字典 {ID: 签名} signature_map = {} with open(sign_csv, 'r') as sign_file: reader = csv.reader(sign_file) for row in reader: if len(row) >= 2: # 确保有ID签名 signature_map[row[0]] = base64.b64decode(row[1]) # 验证并写入有效数据 valid_count = 0 with open(data_csv, 'r') as data_file, open(output_csv, 'w', newline='') as out_file: reader = csv.DictReader(data_file) writer = csv.DictWriter(out_file, fieldnames=reader.fieldnames) writer.writeheader() for record in reader: data_id = record['id'] # 假设ID字段名为'id' if data_id not in signature_map: continue # 跳过无签名的记录 # 构造验证字符串(按字段顺序拼接值) data_str = ','.join(str(record[field]) for field in reader.fieldnames) data_bytes = data_str.encode('utf-8') try: # 验证签名 public_key.verify( signature_map[data_id], data_bytes, padding.PKCS1v15(), hashes.SHA256() ) writer.writerow(record) # 写入有效数据 valid_count += 1 except InvalidSignature: continue # 签名无效则跳过 return valid_count # 执行验证 valid_count = verify_data( public_key_path="public_key.pem", data_csv="data.csv", sign_csv="data-sign.csv", output_csv="valid_data.csv" ) print(f"生成有效数据文件: valid_data.csv, 有效记录数: {valid_count}") ``` ### 关键配置说明 1. **文件格式要求** - `data.csv` 示例: ```csv id,name,age,email 001,张三,30,zhangsan@example.com 002,李四,25,lisi@example.com ``` - `data-sign.csv` 示例: ```csv id,signature 001,MEQCIQD... (Base64签名) 002,MEUCIQD... (Base64签名) ``` 2. **验证逻辑细节** - **字段顺序敏感**:拼接数据字符串时必须与签名生成时的字段顺序一致 - **哈希算法**:使用SHA256确保数据完整性[^2] - **签名填充**:PKCS#1 v1.5填充方案(行业标准) 3. **错误处理** - 自动跳过无签名或签名无效的记录 - 忽略包含非法字符的字段(通过UTF-8编码处理) ### 执行结果 - 成功验证的数据将输出到 `valid_data.csv` - 终端显示有效记录数量 - 篡改数据自动被过滤(如修改`data.csv`中的年龄或邮箱) ### 注意事项 1. **公钥匹配**:确保公钥与签名生成时使用的私钥对应 2. **字段一致性**:`data.csv``data-sign.csv`的ID字段需完全匹配 3. **安全增强建议**: - 添加时间戳验证防止重放攻击[^1] - 对敏感字段(如邮箱)单独二次哈希 - 使用`cryptography`库替代手动实现保证安全性[^2] > 示例引用说明:签名验证机制基于非对称加密原理[^1],通过比较哈希值确保数据在传输过程中未被篡改[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值