wespten
悦分享
网上搜索资料的朋友,一定都会有这样一个感受,那就是知识点有时太过零散,有时又存在误区,有时又太过简短,而有时又缺乏深度,一个系统又详细的分享小天地,为真正想去学习或了解某些事情的朋友,持续提供有价值且有深度的内容。
展开
-
AI工具合集(附免费工具下载)
基于ChatGLM2模型开发,支持多轮对话,具备内容创作、信息归纳总结等能力。ChatGPT 回答的内容长度有限制,如果超出后,只会显示一部分(看下图)、excel、csv、markdown、txt等文件,所有格式简直通吃,世界第一搜索引擎硬刚ChatGPT的第一把斧头。与excel聊天,支持excel计算,排序等。请下载附件,按照附件中的说明文档进行操作。堪称目前最好的文档类工具,没有之一。营销软文,自媒体稿件小助手。目前一枝独秀,独步天下。通用ChatGPT,你就把它当人一样对话,原创 2024-04-16 16:47:13 · 470 阅读 · 0 评论 -
已升级至最新4.0 A*I 客户端工具下载与使用
请下载附件,按照附件中的说明文档进行操作。安装后运行:回答的内容长度有限制,如果超出后,只会显示一部分(看下图)你就把它当人一样对话,原创 2024-06-17 14:51:00 · 107 阅读 · 0 评论 -
180道大厂算法工程师(Python语言)面试题合集
[34] 在排序数组中查找元素的第一个和最后一个位置left=mid+1else:# 从小区间向内探查,然后确定范围=target:left+=1=target:right-=1'''题目:每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此。HF作为牛客的资深元老,自然也准备了一些小游戏。其中,有个游戏是这样的:首先,让小朋友们围成一个大圈。然后,他随机指定一个数m,让编号为0的小朋友开始报数。原创 2023-04-21 14:38:10 · 781 阅读 · 0 评论 -
620道 Python开发工程师面试题合集
_init__:对象初始化方法;__new__:创建对象时候执行的方法,单列模式会用到;__str__:当使用print输出对象的时候,只要自己定义了_str_(self)方法,那么就会打印从在这个方法中return的数据;__del__:删除对象执行的方法;当以字符串格式化书写方式的时候,如果用户输入的有;+SQL语句,后面的SQL语句会执行,比如例子中的SQL注入会删除数据库demo。解决方式:通过传参数方式解决SQL注入。原创 2023-04-27 20:55:32 · 587 阅读 · 0 评论 -
大厂算法面试题汇总
就是我们常见的:购买该商品的用户还购买了如下商品,等等就是文章开头前的啤酒和纸尿裤的故事,因为超市的人员发现很多男人买纸尿裤的时候会买啤酒,根据这一用户行为,纸尿裤和啤酒的相似度较高,那么在用户购买纸尿裤的时候推荐啤酒,增加啤酒的销量。当然,举的这个例子十分简单,实际上,还需要考虑的是每个用户物品的偏好程度,虽然用户 A 和用户 C 都玩过英雄联盟,但是用户 A 和用户 C 对英雄联盟的偏好程度可能不一样,在真正的计算过程中,需要对这种偏好的程度设定一个参数,参数的大小表明用户对物品的偏好程度的大小。原创 2024-05-16 08:23:09 · 150 阅读 · 0 评论 -
机器学习高频面试题
在分类问题中,这个问题相对好理解一点,比如人脸识别中的例子,正样本很好理解,就是人脸的图片,负样本的选取就与问题场景相关,具体而言,如果你要进行教室中学生的人脸识别,那么负样本就是教室的窗子、墙等等,也就是说,不能是与你要研究的问题毫不相关的乱七八糟的场景图片,这样的负样本并没有意义。这里,所有的标记(分类)是已知的。基于物品的CF的原理和基于用户的CF类似,只是在计算邻居时采用物品本身,而不是从用户的角度,即基于用户对物品的偏好找到相似的物品,然后根据用户的历史偏好,推荐相似的物品给用户。原创 2024-06-14 08:35:18 · 86 阅读 · 0 评论 -
算法与数据结构高频面试题
就是我们常见的:购买该商品的用户还购买了如下商品,等等就是文章开头前的啤酒和纸尿裤的故事,因为超市的人员发现很多男人买纸尿裤的时候会买啤酒,根据这一用户行为,纸尿裤和啤酒的相似度较高,那么在用户购买纸尿裤的时候推荐啤酒,增加啤酒的销量。当然,举的这个例子十分简单,实际上,还需要考虑的是每个用户物品的偏好程度,虽然用户 A 和用户 C 都玩过英雄联盟,但是用户 A 和用户 C 对英雄联盟的偏好程度可能不一样,在真正的计算过程中,需要对这种偏好的程度设定一个参数,参数的大小表明用户对物品的偏好程度的大小。原创 2024-06-17 14:41:48 · 240 阅读 · 0 评论 -
Python爬虫及网络编程相关面试题整理
基于TCP的socket编程中,发送端为了将多个发往接收端的包,更有效的发到对方,使用了优化方法(Nagle算法),将多次间隔较小、数据量小的数据包,合并成一个大的数据包发送(把发送端的缓冲区填满一次性发送)。发送端需要等缓冲区满才发送出去,造成粘包接收方不及时接收缓冲区的包,造成多个包接收并发的实质是一个物理CPU(也可以多个物理CPU) 在若干道程序之间多路复用,并发性是对有限物理资源强制行使多用户共享以提高效率。并行”指两个或两个以上事件或活动在同一时刻发生。原创 2023-04-27 18:32:47 · 707 阅读 · 0 评论 -
Python常见面试题合集
Python是一种解释型语言。这就是说,与C语言和C的衍生语言不同,Python代码在运行之前不需要编译。其他解释型语言还包括PHP和Ruby。Python是动态类型语言,指的是你在声明变量时,不需要说明变量的类型。你可以直接编写类似x=111和x="I'm a string"这样的代码,程序不会报错。Python非常适合面向对象的编程(OOP),因为它支持通过组合(composition)与继承(inheritance)的方式定义类(class)。原创 2023-04-27 18:31:40 · 365 阅读 · 0 评论 -
Python开发环境搭建(附VMware安装包及虚拟机环境)
在window命令窗口安装时,首先要确保Python环境变量配置正确。原创 2024-12-04 09:36:34 · 86 阅读 · 0 评论 -
Go 编程应用案例
(5)如果只想获取切片中某项值,不需要值的索引,尽可能的使用for range去遍历切片,这比必须查询切片中的每个元素要快一些;实践经验表明,如果你使用并行运算获得高于串行运算的效率:在协程内部已经完成的大部分工作,其开销比创建协程和协程间通信还高。(6)当数组元素是稀疏的(例如有很多0值或者空值nil),使用映射会降低内存消耗;(4)通道的工厂模板:以下函数是一个通道工厂,启动一个匿名函数作为协程以生产通道。(1)尽可能的使用:=去初始化声明一个变量(在函数内部);原创 2022-10-15 18:54:37 · 1142 阅读 · 0 评论 -
Go 网路编程详解
有了IP和端口,就能确定互联网上的一个程序,进而实现网络间的通信。注意:当服务器运行的时候,你无法编译/连接同一个目录下的源码来产生一个新的版本,因为server.exe正在被操作系统使用而无法被替换成新的版本。net.Error: 这个net包返回错误的错误类型,下边是约定的写法,不过net.Error接口还定义了一些其他的错误实现,有些额外的方法。TCP数据包没有长度限制,但为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不会再被分割。原创 2024-01-15 07:10:37 · 69 阅读 · 0 评论 -
Go Web开发与GUI编程
第二个是请求req。我们引入了http包并启动了网页服务器,和net.Listen("tcp", "localhost:50000")函数的tcp服务器是类似的,使用http.ListenAndServe("localhost:8080", nil)函数,如果成功会返回空,否则会返回一个错误(可以指定localhost为其他地址,8080是指定的端口号)网页服务器返回了一个http.Response,它是通过http.ResponseWriter对象输出的,这个对象整合了HTTP服务器的返回结果;原创 2024-01-15 07:09:45 · 106 阅读 · 0 评论 -
Go 数据操作详解
Fprintf() 能够写入任何类型,只要其实现了 Write 方法,包括 os.Stdout,文件(例如 os.File),管道,网络连接,通道等等,同样的也可以使用 bufio 包中缓冲写入。如果这些函数读取到的结果与您预想的不同,您可以检查成功读入数据的个数和返回的错误。如果您想这么做,可以使用 io/ioutil 包里的 ioutil.ReadFile() 方法,该方法第一个返回值的类型是 []byte,里面存放读取到的内容,第二个返回值是错误,如果没有错误发生,第二个返回值为 nil。原创 2024-01-15 07:01:08 · 85 阅读 · 0 评论 -
Go 错误处理详解
这是所有自定义包实现者应该遵守的最佳实践:1)在包内部,总是应该从 panic 中 recover:不允许显式的超出包范围的 panic()2)向包的调用者返回错误值(而不是 panic)。在包内部,特别是在非导出函数中有很深层次的嵌套调用时,对主调函数来说用 panic 来表示应该被翻译成错误的错误场景是很有用的(并且提高了代码可读性)。这在下面的代码中被很好地阐述了。我们有一个简单的 parse 包用来把输入的字符串解析为整数切片;这个包有自己特殊的 ParseError。原创 2024-01-15 07:02:54 · 73 阅读 · 0 评论 -
Go 接口(interface)与反射(reflection)详解
Go 语言不是一种“传统”的面向对象编程语言:它里面没有类和继承的概念。但是 Go 语言里有非常灵活的接口概念,通过它可以实现很多面向对象的特性。接口提供了一种方式来说明对象的行为:如果谁能搞定这件事,它就可以用在这儿。接口定义了一组方法(方法集),但是这些方法不包含(实现)代码:它们没有被实现(它们是抽象的)。接口里也不能包含变量。...上面的Namer是一个接口类型。原创 2022-10-15 13:55:53 · 837 阅读 · 0 评论 -
Go 标准库与第三方库
1)Reader接口定义:示例:2)Writer接口定义:2、文件操作1)开、关闭文件2)读取文件内容3)循环读取文件内容4)bufio读取文件5)ioutil读取文件6)写入文件os.OpenFile()以指定模式打开文件,从而实现文件写入相关功能:7)Write和WriteString8)bufio.NewWriter9)ioutil.WriteFile10)拷贝文件3、格式化输出1)通用占位符2)布尔型原创 2024-01-15 07:05:54 · 96 阅读 · 0 评论 -
Go 语法详解
每一个程序都包含很多的函数:函数是基本的代码块。Go是编译型语言,所以函数编写的顺序是无关紧要的;鉴于可读性的需求,最好把 main() 函数写在文件的前面,其他函数按照一定逻辑顺序进行编写(例如函数被调用的顺序)。编写多个函数的主要目的是将一个需要很多行代码的复杂问题分解为一系列简单的任务(那就是函数)来解决。而且,同一个任务(函数)可以被调用多次,有助于代码重用。原创 2024-01-15 06:57:27 · 195 阅读 · 0 评论 -
Go 数据类型与数据结构详解
Go 的源文件以 .go 为后缀名存储在计算机中,这些文件名均由小写字母组成,如 scanner.go。如果文件名由多个部分组成,则使用下划线 _ 对它们进行分隔,如 scanner_test.go。文件名不包含空格或其他特殊字符。一个源文件可以包含任意多行的代码,Go 本身没有对源文件的大小进行限制。你会发现在 Go 代码中的几乎所有东西都有一个名称或标识符。另外,Go 语言也是区分大小写的,这与 C 家族中的其它语言相同。原创 2024-01-15 06:51:59 · 107 阅读 · 0 评论 -
Go 安装配置详解
Go 语言起源 2007 年,并于 2009 年正式对外发布。它从 2009 年 9 月 21 日开始作为谷歌公司 20% 兼职项目,即相关员工利用 20% 的空余时间来参与 Go 语言的研发工作。该项目的三位领导者均是著名的 IT 工程师:Robert Griesemer,参与开发 Java HotSpot 虚拟机;Rob Pike,Go 语言项目总负责人,贝尔实验室 Unix 团队成员,参与的项目包括 Plan 9,Inferno 操作系统和 Limbo 编程语言;原创 2024-01-15 06:47:55 · 75 阅读 · 0 评论 -
Python 机器学习实战
机器学习正在迅速改变我们的世界。作为人工智能的核心,我们几乎每天都会读到机器学习如何改变日常的生活。一些人认为它会带领我们进入一个风格奇异的高科技乌托邦;而另一些人认为我们正迈向一个高科技天启时代,将与窃取我们工作机会的机器人和无人机敢死队进行持久的战争。不过,虽然权威专家们可能会喜欢讨论这些夸张的未来,但更为平凡的现实是,机器学习正在快速成为我们日常生活的固定装备。随着我们微小但循序渐进地改进自身与计算机以及周围世界之间的互动,机器学习正在悄悄地改善着我们的生活。原创 2023-05-01 20:20:04 · 484 阅读 · 1 评论 -
Python NLP自然语言处理详解
在这个大数据时代,几乎所有事物都能用数据描述。数据可以大致分为三类。第一类是用于传播的媒体数据,如图片、音频、视频等。这类数据一般不需要做处理,只需要存储和读取。第二类是数字类数据,其价值很高。因为数字是有一定规律的,从已有数字中发现的规律可以用于预测未来的数据。这也是传统大数据处理与分析的主要方面。第三类是自然语言数据。这类数据更贴近生活,对其进行统计和分析,可以让机器理解人的语言,实现机器与人的交流。原创 2022-10-18 13:39:47 · 7911 阅读 · 1 评论 -
Python 八大排序算法合集
基数排序(radix sort)属于"分配式排序"(distribution sort),又称"桶子法"(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些"桶"中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。第三步,插入2之后: [2, 4, 5], 1, 3。第四步,插入1之后: [1, 2, 4, 5], 3。原创 2023-04-17 15:48:57 · 420 阅读 · 0 评论 -
常见算法Python实现
0,1,,n-1 这 n 个数字排成一个圆圈,从数字 0 开始,每次从这个圆圈里删除第 m 个数字。求出这个圆圈里剩下的最后一个数字。例如,0、1、2、3、4 这 5 个数字组成一个圆圈,从数字 0 开始每次删除第 3 个数字,则删除的前 4 个数字依次是 2、0、4、1,因此最后剩下的数字是 3。这就是一个约瑟夫环问题。解题思路:解题的一种方法是可以用环形链表来模拟圆圈,然后循环就可以解决了。但会发现环形链表重复遍历了很多遍,总的时间复杂度是 O(mn)。原创 2023-04-21 11:42:50 · 449 阅读 · 0 评论 -
Python 数据结构与算法详解
排序算法(英语:Sorting algorithm)是一种能将一串数据依照特定顺序进行排列的一种算法。1. 排序算法的稳定性稳定性:稳定排序算法会让原本有相等键值的纪录维持其相对次序。也就是如果一个排序算法是稳定的,当有两个相等键值的纪录 R 和 S,且在原本的列表中 R 出现在 S 之前,在排序过的列表中 R 也将会是在 S 之前。当相等的元素是无法分辨的,比如像是整数,稳定性并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。原创 2022-10-28 07:34:37 · 3424 阅读 · 0 评论 -
Python 量化交易实战
Tushare是一个免费的、开源的财经数据库,可谓是金融业的数据宝库,包含着多方面的数据:股票、指数、基金、期货、债券、外汇、行业大数据,以及提供数字货币行情等区块链数据。这些数据为金融业带来了福音,也为研究人员提供了可靠的参考。Tushare里面的基础数据都是免费共享的,这对学生党来说简直是打开了新世界的大门。通过注册Tushare账号,便可获得相应的token(由字母和数字组成),即可获得数据权限。原创 2023-05-01 15:02:09 · 644 阅读 · 0 评论 -
Python 数据采集、清洗、整理、分析以及可视化实战
参考 Method-2 的处理过程,编写数据处理的自定义函数’pro_col’,并在 Method-2 的基础上拓展其他替换功能,使之适用于这四列数据(“Sales”,“Profits”,“Assets”,“Market_value”)。原创 2023-05-01 16:27:13 · 4978 阅读 · 0 评论 -
Python读取文件数据进行数据图形化展示
函数 json.dump() 接受一个JSON数据对象和一个文件对象,并将数据写入这个文件中。函数 json.load() 将数据转化为Python能够处理的格式,是一个庞大的字典文件,随后我们创建一个新的文件将数据存入其中。多行数据需要增加修改图例名称的方法,默认从0开始,设置为从1开始。可视化图如下:有了颜色渐变,以及标记点的大小区别,这样的可视化图能将关键信息显示的一目了然。pandas 定义图表数据,所有有关数据的信息都以键值对的形式放在一个字典中。文件数据都提取正常,接下来就是进行数据可视化。原创 2024-02-03 21:18:19 · 621 阅读 · 0 评论 -
Python 数据分析与可视化实战
如果要在多个程序中重复实现某一个特定功能,那么能不能直接在新程序中调用自己或他人已经编写好的代码,而不用在新程序中重复编写功能类似的代码呢?答案是肯定的,这就要用到Python中的模块。模块也可以称为库或包,简单来说,每一个以“.py”为扩展名的文件都可以称为一个模块。Python的模块主要分为下面3种。原创 2022-10-18 09:28:17 · 10422 阅读 · 3 评论 -
Python pandas 数据清洗与数据绘图实战
熟悉电子表格的人能够发挥出着实惊人的技巧,可以组合有关联的不同数据集、数据透视表,可以用查找表链接数据集等。必须要清楚的是,这里有很多操作其实并不属于pandas本身的功能,pandas有赖于安装的其他库来处理这些操作,例如,SQL数据库的读取就是用SQLAlchemy完成的。在探索和操作数据的过程中,需要执行很多的常见操作,例如,将数据加载到列表或字典中、清洗数据并过滤数据。现在应该关注的重点是,在一行数据中,观测站ID是前11个字符,年份是后面4个字符,月份是再后面两个字符,元素是再后面4个字符。原创 2023-04-16 12:31:44 · 811 阅读 · 0 评论 -
Pandas 使用指南
pandas 中的 apply 函数应用自定义函数时,通常情况下,都是没有参数或者一个参数,那么如果有两个参数,是否还可以使用 apply 函数呢?答案是可以的。这里我们也来探讨下。df1 = df1[[' 基 金 代 码 ',' 基 金 简 称 ']]# 自 定 义 函 数 有 两 个 参 数 的 情 形# 获 取 年 度 年 底 基 金 净 值 数 据df = ak.fund_em_open_fund_info(fund=code, indicator=" 单 位 净 值 走 势 ")原创 2023-04-29 17:14:28 · 375 阅读 · 0 评论 -
Numpy 科学计算库详解
Numpy 是一个开源的 Python 科学计算库,它是 Python 科学计算库的基础库,许多其他著名的科学计算库如Pandas,Scikit-learn 等都要用到 Numpy 库的一些功能。原创 2023-04-29 23:31:47 · 303 阅读 · 1 评论 -
Python 交互式数据可视化详解
Plotly 是一款用来做数据分析和可视化的在线平台,功能非常强大,可以在线绘制很多图形比如条形图、散点图、饼图、直方图等等。而且还是支持在线编辑,以及多种语言python、javascript、matlab、R等许多API。它在python中使用也很简单,直接用pip install plotly就可以了,推荐最好在jupyter notebook中使用,pycharm操作不是很方便。plotly有在线和离线两种模式,在线模式需要有账号可以云编辑。原创 2023-05-01 11:44:23 · 820 阅读 · 0 评论 -
Python 数据可视化详解
数据可视化是一种将庞杂抽象的数据转化为直观易懂的图形的数据呈现技术,它能帮助我们快速把握数据的分布和规律,更加轻松地理解和探索信息。在当今这个信息爆炸的时代,数据可视化越来越受重视。原创 2022-10-18 15:04:26 · 25582 阅读 · 6 评论 -
Matplotlib 数据可视化详解
数据可视化旨在将数据呈现为更直接的表示形式,例如散点图,密度图,条形图等。通过可视化数据,可以检测到潜在的异常值。在 Python 中,可以使用各种模块或库来可视化数据。Matplotlib 是主流模块之一,可以使用 Matplotlib 以各种绘图样式来可视化数据。本文中,安装了 Matplotlib 3.3.2 版本。如果要在 Jupyter Notebook(以下称为 Jupyter)中进行检查,则可以通过下面的代码来进行检查,如下图所示。原创 2023-04-30 14:11:31 · 567 阅读 · 0 评论 -
Python 数据文件与网络数据序列化存储详解
大部分可用数据都是存放于文本文件中的。这些数据可以是非结构化文本(如一篇推文或文学作品),也可以是比较结构化的数据,其每一行都是一条记录,多个字段之间由特殊字符分隔,如逗号、制表符或管道符号“|”。文本文件有可能会很大,一个数据集可能会分布在几十甚至几百个文件中,其中的数据可能并不完整或充斥大量脏数据(dirty data)。虽然存在这么多变数,但还是会有读取和使用文本文件数据的需求,这几乎是难以避免的。只要有数据文件存在,就需要从文件中获取、解析数据并转换为有用的格式,然后执行某些操作。原创 2023-04-16 10:46:00 · 716 阅读 · 0 评论 -
Python数据存取详解
下面比较使用PyMySQL模块和read_sql_query()函数操作数据库的不同之处。原创 2022-10-18 12:33:33 · 3914 阅读 · 0 评论 -
Python爬虫进行接口测试
UI页面的测试,除了定位元素和模拟操作外,更多的是需要收集一些数据并进行后续的逻辑处理,这时就需要使用爬虫技术来实现数据有爬取。爬虫技术也可以用于测试,例如通过爬虫对测试页面进行采集和分析,对功能点进行冒烟测试。网络爬虫可以爬取Web站点的内容,对爬虫爬取的对应接口添加断言,便可进行自动化测试。通过循环不同的URL来抓取多个页面,便可将结果持久化以便进一步分析。爬虫测试的核心在于爬虫,其流程大致如下。(1)访问页面。可以使用requests库进行GET或者POST请求,访问页面资源。原创 2023-05-07 17:31:03 · 897 阅读 · 0 评论 -
Python 爬虫案例
大数据采集:通过爬虫获取特定行业(如汽车行业)股票的基本信息,并获取单只股票的历史行情数据。大数据存储:根据自定义的时间间隔定时获取涨幅前60名股票的实时行情数据,并存储在数据库中。大数据分析:计算股票的月涨跌幅,对股票进行相关性分析,并预测股票行情的未来走势。原创 2022-10-19 07:37:15 · 13912 阅读 · 3 评论 -
Python 爬虫详解
要对数据进行处理和分析,首先就要拥有数据。在当今这个互联网时代,大量信息以网页作为载体,网页也就成了一个很重要的数据来源。但是,网页的数量非常之多,如果以人工的方式从网页上采集数据,工作量相当巨大。从本章开始就要为大家介绍一个自动采集网页数据的利器——爬虫。爬虫是指按照一定的规则自动地从网页上抓取数据的代码或脚本,它能模拟浏览器对存储指定网页的服务器发起请求,从而获得网页的源代码,再从源代码中提取出需要的数据。使用爬虫获取数据,具有全天候、无人值守、效率高等优点。原创 2022-10-19 06:48:30 · 1447 阅读 · 1 评论