【动态规划】TopCoder SRM 573 division2 WolfPackDivTwo

比赛的时候没做出来,当时的思路是计算组合数,这个思路应该也没错,但是有一些情况我不会求。比如走m步回到原地的方案数,到现在也没想明白……

参考答案是动态规划的方式,将原问题分解成一个个小的问题,避开了求组合数,同时利用备忘录的方法大大减小了时间复杂度。

我的代码:

 #include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <ctime>
#define MOD 1000000007

using namespace std;

const int dir_x[] = {0, 1, 0, -1};
const int dir_y[] = {1, 0, -1, 0};
// Divide original problem into smaller problems
// And then using dynamic programming algorithm
class WolfPackDivTwo {
public:
	// dx, dy, m
	int f[55][55][55];
	int calc(vector <int>, vector <int>, int);
	
	// Get the result of dx, dy, m
	int get(int dx, int dy, int m){
		// Boundary conditions
		if(m == 0){
			if(dx==0 && dy==0)
				return 1;
			else return 0;
		//	return (dx==0 && dy==0);
		}
		if(f[dx][dy][m] == -1){
			f[dx][dy][m] = 0;
			for(int i=0; i<4; i++){
				int tx = abs(dx+dir_x[i]);
				int ty = abs(dy+dir_y[i]);
				if(tx+ty <= m-1)
					f[dx][dy][m] = (f[dx][dy][m]+get(tx, ty, m-1))%MOD;
			}
		}
		return f[dx][dy][m];
	}
	
};

int WolfPackDivTwo::calc(vector <int> x, vector <int> y, int m) {
	int length = x.size();
	long long res = 0;
	
	// Initialization
	for(int i=0; i<55; i++)
	for(int j=0; j<55; j++)
	for(int k=0; k<55; k++)
		f[i][j][k] = -1;
	
	// For every position
	for(int i=-51; i<105; i++)
	for(int j=-51; j<105; j++){
		long long tmp = 1;
		for(int k=0; k<length; k++){
			if(abs(x[k]-i)+abs(y[k]-j) > m){
				tmp = 0;
				break;
			}
			else{
				tmp = (tmp*get(abs(x[k]-i), abs(y[k]-j), m))%MOD;
			}
		}
		res = (res+tmp)%MOD;
	}
	return res;
}

//<%:testing-code%>
//Powered by [KawigiEdit] 2.0!


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值