[NLG]GECOR: An End-to-End Generative Ellipsis and Co-reference Resolution Model for Task-Oriented Di

摘要:

  之前还没有人做过multi-turn dialogue的有关省略和共指词汇的研究,只有短文本恢复省略词汇的研究。本文作者通过构造一个数据集(数据集中将dialogue的省略词和共指词都标记了出来),然后结合attention和copynet提出了一个end2end的multi-task学习框架。学习在结合上文的情况下,如何生成省略词和共指词。并且EM,BLEU,F1的效果不错。

主要贡献:

1.提出了一个端到端的框架,试图解决省略词和共指词的问题

2.结合了生成省略词,共指词的任务与multi-turn task-oriented dialogue的任务,这样可以提高dialogue的效果

3.构造了一个数据集

模型:

第一步:左边是针对上一句话,右边是dialogue context,也就是之前的所有对话

1.先对左右两边进行encoder,使用glove词向量,分别经过双向GRU编码。然后左边经过一个attention层,获得当前句子中词与词之间的联系。并且将这个联系以及现在已经生成词汇的编码传递到一层GRU。从GRU出来的hidden在传递到右边的机制中。此外,GRU本身可以获得一个生成的词表可能性。

2.右边编码之后进入一个copy机制,这个copy机制结合从左边来的信息,以及历史文本信息,然后获得一个当前应该copy哪个词的概率。

3.最后左右两边决定一下,到底是生成还是copy

以上是编码层和decoder层。此外他还和dialogue的任务结合起来做了multi-task。

分为两个encoder和三个decoder,简单介绍一下三个decoder:

第一个decoder:

主要是根据前面得到的BSpan(就是一些关键词)以及当前的话语,生成当前这句话的Bspan。

第二个decoder:

同之前介绍的那个架构,一个一个词的完成当前这个句子,消去当前这个句子的省略和共指,并且将他们替换成名词。

第三个decoder:

就是dialogue的任务了,需要生成这句话的response。

一句话总结:

   在dialogsystem的NLU任务中,通过attention和copynet机制消除省略和共指词,并且和dialogue的训练构成一个multi-task形式的任务,以提高dialogue生成的质量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值