lwgkzl
码龄7年
  • 2,207,287
    被访问
  • 297
    原创
  • 4,899
    排名
  • 197
    粉丝
关注
提问 私信

个人简介:海风和着歌声,星空伴着代码

  • 加入CSDN时间: 2015-11-05
博客简介:

lwgkzl的博客

查看详细资料
  • 7
    领奖
    总分 3,454 当月 84
个人成就
  • 获得1,077次点赞
  • 内容获得293次评论
  • 获得2,761次收藏
创作历程
  • 6篇
    2022年
  • 2篇
    2021年
  • 10篇
    2020年
  • 42篇
    2019年
  • 105篇
    2018年
  • 69篇
    2017年
  • 69篇
    2016年
成就勋章
TA的专栏
  • 信息检索
    5篇
  • 对话系统
    15篇
  • LeetCode
    36篇
  • Pytorch
    5篇
  • 编程语言
  • python
    45篇
  • java
    1篇
  • CPP
    16篇
  • 爬虫
    4篇
  • ACM题解
  • 深度优先搜索
    4篇
  • 暑假集训
    5篇
  • 数据结构
    10篇
  • 20道动态规划
    6篇
  • 最短路
    7篇
  • 矩阵快速幂
    2篇
  • 水题
    17篇
  • 最小生成树
    4篇
  • 并查集
    11篇
  • 字典树
    6篇
  • 动态规划
    20篇
  • 树状数组
    5篇
  • 贪心
    5篇
  • 特殊技巧
    5篇
  • 字符串算法
    6篇
  • 数学博y论
    4篇
  • 数据结构和线段树
  • 数学
    1篇
  • 二分
    9篇
  • 多校
    2篇
  • 哈希
    2篇
  • 后缀自动机
    1篇
  • 广度优先搜索
    5篇
  • 单调栈
    1篇
  • kmp算法
    2篇
  • 闲谈
    4篇
  • linux
    16篇
  • caffe
    9篇
  • 面试
    3篇
  • 配置环境
    18篇
  • flask
    9篇
  • NLP
    26篇
  • cs231n
    1篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络自然语言处理tensorflowpytorchnlp数据分析
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【信息检索导论】第七章搜索系统中的评分计算

1. 总述本章主要解决以下问题:对于千亿级别的文档,为每一个询问对文档库进行排序是不现实的,如果快速的检索出某个询问最相关的topk个文档呢?除了query与document的相似度之外,对文档进行排序的过程是否还需要其他指标? 如何综合这些指标呢一个完整的信息检索系统需要包括哪些模块?向量空间模型是否支持通配符查询?2. 快速评分与排序本章主要介绍一些启发式的方法,用来快速的找到符合与某个询问较为相关的K个文档,找到的文档中并非完全包含最相关topk,但我们会返回与真实topk分数接近的
原创
发布博客 2022.03.05 ·
472 阅读 ·
0 点赞 ·
0 评论

parser.parse_args 布尔值类型将False解析为True

记录一个大坑,遇到好多次了,一直没长记性 ==!问题当我在代码中使用parser添加一个参数的时候, 将其设置成bool类型的,然后默认值为True。parser.add_argument("--some_argument", default=True, type=bool)然而,当我在命令行中输入 --some_argument=False的时候, 代码跑出来some_argument这个参数还是True。我怀疑是自己的编码姿势不对, 换了--some_argument=false(
原创
发布博客 2022.03.03 ·
173 阅读 ·
0 点赞 ·
0 评论

【信息检索导论】第六章 词项权重及向量空间模型

1. 总述本章主要介绍一下几个问题:给定关键词,如何评定包含这些关键词的文档中哪些更重要,即如何给文档进行相关性排序tf-idf算法是什么? 怎样给文档中的词项进行打分?支配了IR界几十年的空间向量模型是什么?他存在什么缺点?2. 参数索引及域索引本节以一个简单的例子介绍如何给文档进行排序。元数据(metadata):一个文档固定有的字段,并且该字段取值范围是有限的,如文档的创建时间,创建者,文档类型等。文本域(zone): 一个文档的某些字段,并且该字段的取值范围是无限的,如文档标题,
原创
发布博客 2022.02.06 ·
560 阅读 ·
0 点赞 ·
0 评论

【信息检索导论】第三章 容错式检索

总览本章主要解决以下几个问题:根据用户的询问,如何找到用户询问中的词语对应的倒排表?如果用户不记得某个单词怎么拼写,如何实现模糊查询(通配符查询)?如果用户写错了某个字, 怎么样帮助他纠正,以便返回用户真正想查询的单词?以上问题分别对应下面的三小节。3.1 检索词项字典前言:在前两章中,我们进行布尔查询都是直接默认根据用户查询的词项,就直接获取到了他的倒排表。但实际上,我们需要首先在词项词典中找到对应的词项,才能返回该词项对应的倒排表。对用户的query进行分词后,获取到待查询词项,我们首
原创
发布博客 2022.01.28 ·
687 阅读 ·
0 点赞 ·
0 评论

【信息检索导论】第二章 词项词典与倒排记录表

总览本章介绍的较为琐碎,因为书中提及了很多实际应用中的具体困难,而这些困难书中也并未提及解决方案,一般是凭经验去权衡。其内容主要还是围绕倒排表进行讲述的,讲述重点有两个。一是如何从文本中抽取词条,涉及到分词,以及词语的归一化问题(2.2), 二是如何高效的进行检索,即倒排表如何快速合并,考虑连续的二元组该如何查询等(2.3, 2.4)2.1 文档分析与编码转换编码转换:主要介绍文档的解码问题,用UTF-8还是其他编码,以及不同平台间的文档的解码问题。索引粒度(index granularity):
原创
发布博客 2022.01.27 ·
373 阅读 ·
0 点赞 ·
0 评论

【信息检索导论】第一章 布尔检索

信息检索导论 第一章内容总结
原创
发布博客 2022.01.25 ·
346 阅读 ·
3 点赞 ·
2 评论

Conda 创建,复制,分享虚拟环境

创建一个新的虚拟环境:conda create --name env_name python=3.7复制现有的一个环境conda create --name new_env_name --clone old_env_name分享环境即导出某个环境为配置文件,在别的计算机中以该配置文件重新安装此环境,常用于环境的迁移conda activate my_env_name # 首先进去需要分享的环境conda env export > my_env.yml..
原创
发布博客 2021.09.30 ·
356 阅读 ·
0 点赞 ·
0 评论

【BERT,GPT+KG调研】Pretrain model融合knowledge的论文集锦

总述: 本文调研近年来bert与knowledge的融合的工作, 对于每一篇工作, 大概的介绍他们融合knowledge的方式, 并且进行自己的点评。文章列表:1.Align, Mask and Select: A Simple Method for Incorporating Commonsense Knowledge into Language Representation Models arxiv 2019主要目标: 把struct knowledge融合到bert的参数当中,...
原创
发布博客 2021.04.26 ·
459 阅读 ·
4 点赞 ·
0 评论

【Torch】最简洁logging使用指南

网上的教程大多十分复杂,实际上使用logging非常简单, 三行代码就好了我使用logging是为了方便调试, 因为输出框缓存的数量是有限的,如果把输出打印到文件中观察使用体验会好很多,因为这三行代码的功能就是为了将输出导出到某一个文件中配置代码如下:import logginglogging.basicConfig(level=logging.INFO, filename='./mylog/test.log', filemode='w')这里首先引用了logging的包, 然后配置一
原创
发布博客 2020.12.08 ·
1182 阅读 ·
1 点赞 ·
0 评论

【Torch】解决tensor参数有梯度,weight不更新的若干思路

问题: 在torch类里面用nn.Parameter声明了一个可学的Tensor参数, 结果每次梯度回传之后,可以看到变量梯度,但是该参数的weight始终不变,一直保持着初始值。思路:遇到某参数的weight一直不更新,解决思路有以下几种:1. 检查该变量的梯度是否为0或者为None, 对于pytorch的中间变量,输出梯度的方式见博客:https://www.jianshu.com/p/ad66f2e38f2f 如果是None或者0,说明梯度没有...
原创
发布博客 2020.11.24 ·
3270 阅读 ·
8 点赞 ·
3 评论

Subword三大算法原理:BPE、WordPiece、ULM

前言Subword算法如今已经成为了一个重要的NLP模型性能提升方法。自从2018年BERT横空出世横扫NLP界各大排行榜之后,各路预训练语言模型如同雨后春笋般涌现,其中Subword算法在其中已经成为标配。所以作为NLP界从业者,有必要了解下Subword算法的原理。目录与传统空格分隔tokenization技术的对比 Byte Pair Encoding WordPiece Unigram Language Model 总结1. 与传统空格分隔tokenization技术的对比
转载
发布博客 2020.09.18 ·
644 阅读 ·
1 点赞 ·
1 评论

python 如何用变量名字符串获取变量的值

通过字符串的f操作:aa = 5print(f"{aa}")bb = [1,2,3]print(f'{bb}')关于f操作的更多信息,请见https://blog.csdn.net/yizhuanlu9607/article/details/89530982
原创
发布博客 2020.07.30 ·
5790 阅读 ·
1 点赞 ·
5 评论

python list中找Topk的数值和索引

需求:对于一个python list 或者numpy数组,我需要找到这个list中最大的K个数及其对应的下标。解决方式:1. 可以构造字典通过排序解决,不过代码量较多。2. 使用heapq库,可以直接获取最大值的下标和数值。import heapqa = [4,2,6,1,9,9]# 获取下标, 输出为[4, 5, 2]heapq.nlargest(3, range(len(a)), a.__getitem__)# 获取数值, 输出为[9, 9, 6]heapq.nlar
原创
发布博客 2020.07.21 ·
4551 阅读 ·
7 点赞 ·
0 评论

【MEDICAL】Attend to Medical Ontologies: Content Selection for Clinical Abstractive Summarization

任务: 据作者说,英文的医疗影像报告同时具有两个描述,一个是FINDINGS,阐述了整个图像的细节与特点,还有一个是IMPRESSION,只重点描述图像中的关键信息,这些关键信息是包含在FINDINGS里面的。总之,本篇论文做的就是利用这个FINDINGS来生成IMPRESSION,即在文本摘要在医疗领域的应用。模型: Content Selector:这个选择器采用序列标注的形式来实现,整个FINDINGS序列的每个词有0,1两种标注。如...
原创
发布博客 2020.06.19 ·
225 阅读 ·
0 点赞 ·
0 评论

allennlp 中的TypeError: Object of type Tensor is not JSON serializable错误

错误展示:File "/home/yanshangyao/anaconda3/envs/torch14/bin/allennlp", line 8, in <module> sys.exit(run()) File "/home/yanshangyao/anaconda3/envs/torch14/lib/python3.7/site-packages/allennlp/run.py", line 18, in run main(prog="allennlp") F
原创
发布博客 2020.06.18 ·
1175 阅读 ·
0 点赞 ·
0 评论

python的正则表达式匹配如何找到所有匹配成功的部分(包括重叠的)

比如: st = “平安夜吃苹果呀小菇凉” , pattern = '((平|苹).*?果)‘我希望匹配的字符串是 "平安夜吃苹果" 以及 “苹果” 很显然后面那个是包含在前面一个字符串中的。解决方式有两种:1. ?= 原理暂时我没有弄清楚,请路过的大佬指点在这个pattern的周围加上一个?=,然后套一个分组括号。详见代码:st = "平安夜吃苹果呀小菇凉"...
原创
发布博客 2020.04.23 ·
2342 阅读 ·
2 点赞 ·
0 评论

运行bash文件报错 syntax error near unexpected token '$'do\r''

在pycharm上直接写了一个sh文件,到服务器上面运行就报错,错误如标题。then,在服务器上vim把所有的换行,空格删掉重打无效最后,总结了错误原因以及两种解决方式。原因:其实很多博客讲了,因为windows和linux系统换行符的不同,在windows中换行符是'\r
',而在linux中只有'
',现在我们就明白报错的意义了, windows格式写的代码放到linux执...
原创
发布博客 2020.04.09 ·
1334 阅读 ·
2 点赞 ·
0 评论

point-wise element-wise

先占个坑point-wise element-wise实际上是同一个东西,就是两个矩阵的对应位置逐点相乘,也就是说这两个矩阵的大小要是一样的。不同的人有不同的表达,还有一个Hadamard product实际上也是同一个意思。...
原创
发布博客 2020.04.08 ·
2309 阅读 ·
0 点赞 ·
2 评论

RuntimeError: reduce failed to synchronize: device-side assert triggered pytorch训练

总述:本意在于记录一下这个问题产生的种种情况,请注意不是显卡坏了,而是代码出错了。1. nan问题在训练的时候,长久累积某一个tensor,导致他的值过大产生nan。还有可能是,某一个参数没有初始化,使得内存地址随意赋值,常出现于nn.paramter()的时候...
原创
发布博客 2019.12.10 ·
3437 阅读 ·
0 点赞 ·
0 评论

[NLU] DialogueGCN: A Graph Convolutional Neural Network for Emotion Recognition in Conversation

总述:最大的特色就是将GCN用在了对话情感识别上,这里的coversation可能是不止两个人的。然后故事写得很好,inter-dependency和intra-dependency还有self-dependency唬的我一愣一愣的。主要模型:inter-depencency intra-dependency所谓的inter-dependency其实就是说某一个speak对其他...
原创
发布博客 2019.11.19 ·
2267 阅读 ·
2 点赞 ·
3 评论
加载更多