八种排序算法总结之C++版本

八种排序算法总结之C++版本

五种简单排序算法

一、            冒泡排序 【稳定的】

void BubbleSort( int* a,int Count )  //实现从小到大的最终结果

{

    int temp;

    for(int i=1;i<Count; i++)  //外层每循环一次,将最小的一个移动到最前面

        for(int j=Count-1;j>=i; j--)

            if( a[j] < a[j-1] )   

            {

                temp =a[j];

                a[j] =a[j-1];

                a[j-1] =temp;

            }

}

 

现在注意,我们给出O方法的定义:

若存在一常量K和起点n0,使当n>=n0时,有f(n)<=K*g(n),则f(n) = O(g(n))。(呵呵,不要说没学好数学呀,对于编程数学是非常重要的!!!)

现在我们来看1/2*(n-1)*n,当K=1/2,n0=1,g(n)=n*n时,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n) =O(g(n))=O(n*n)。所以我们程序循环的复杂度为O(n*n)

 

 

二、            交换排序    【稳定的】

void ExchangeSort( int *a,int Count)

{

    int temp;

    for(int i=0;i<Count-1; i++)

        for(int j=i+1;j<Count; j++)

            if( a[j] < a[i] )

            {

                temp =a[j];

                a[j] =a[i];

                a[i] =temp;

            }

}

 

时间复杂度为O(n*n)

 

 

三、            选择法  【不稳定的】

void SelectSort( int *a,int Count)

{

    int temp; //一个存储值

    int pos;  //一个存储下标

    for(int i=0;i<Count; i++)

    {

        temp = a[i];

        pos  = i;

        for(int j=i+1;j<Count; j++)

            if( a[j] < temp ) //选择排序法就是用第一个元素与最小的元素交换

            {

                temp =a[j];

                pos  = j;  //下标的交换赋值,记录当前最小元素的下标位置

            }

        a[pos] = a[i];

        a[i] = temp;

    }

}

遗憾的是算法需要的循环次数依然是1/2*(n-1)*n。所以算法复杂度为O(n*n)。
我们来看他的交换。由于每次外层循环只产生一次交换(只有一个最小值)。所以f(n)<=n
所以我们有f(n)=O(n)。所以,在数据较乱的时候,可以减少一定的交换次数。

 

 

四、            插入法  【稳定的】

 

void InsertSort( int *a,int Count)

{

    int temp; //一个存储值

    int pos;  //一个存储下标

    for(int i=1;i<Count; i++) //最多做n-1趟插入

    {

        temp = a[i];    //当前要插入的元素

        pos  = i-1;

        while( pos>=0 && temp<a[pos] )

        {

            a[pos+1] =a[pos]; //将前一个元素后移一位

            pos--;

        }

        a[pos+1] = temp;

    }

}

其复杂度仍为O(n*n)。

最终,我个人认为,在简单排序算法中,直接插入排序是最好的。

 

 

五、            希尔排序法   【不稳定的】

 

/*

*   希尔排序,n为数组的个数

*/

void ShellSort( int arr[], int n ) 

{

    int temp,pos;

    int d = n;      //增量初值

    do{

        d = d/3 + 1 ;

        for(int i= d;i<n; i++ )

        {

            temp =arr[i];

            pos = i-d;

            while(pos>=0 && temp < arr[pos] ) {    //实现增量为d的插入排序

                arr[ pos+ d ] = arr[pos];

                pos -=d;

            }

            arr[ pos + d] = temp;

        }

    } while( d > 1 );

}

 

 

三种高级排序算法

一、        快速排序   辅助空间复杂度为O(1)  【不稳定的】

void QuickSort( int *a,int left, int right)

{

    int i,j,middle,temp;

    i = left;

    j = right;

    middle = a[(left+right)/2 ];

    do

    {

        while( a[i]<middle && i<right ) //从左扫描大于中值的数

            i++;

        while( a[j]>middle && j>left ) //从右扫描小于中值的数

            j--;

        if( i<=j )  //找到了一对值

        {

            temp = a[i];

            a[i] = a[j];

            a[j] = temp;

            i++;

            j--;

        }

   

    } while ( i<j ); //如果两边的下标交错,就停止(完成一次)

    //当左半边有值(left<j),递归左半边

    if( left < j )

        QuickSort( a,left, j);

    //当右半边有值(right>i),递归右半边

    if( i < right )

        QuickSort( a, i,right);

}

 

它的工作看起来象一个二叉树。首先我们选择一个中间值middle,程序中我们使用数组中间值,然后把比它小的放在左边,大的放在右边(具体的实现是从两边找,找到一对后交换)。然后对两边分别使用这个过程(最容易的方法——递归)。注意,由于数据的随机性,对middle的选择并不会影响该算法的效率。

注意,在扫描过程中,对于给定参考值,对于向右(左)扫描,如果扫描值大(小)于或等于参考值,就需要进行交换。最终得到的结果是,j左边的值都小于参考值,而i右边的值都大于参考值,ji之间的值都等于参考值。对j左边和i右边的分别使用递归,就可以完成最终的排序。

 

这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况
1.数组的大小是2的幂,这样分下去始终可以被2整除。假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......
所以共有n+2(n/2)+4(n/4)+...+n*(n/n)= n+n+n+...+n=k*n=log2(n)*n
所以算法复杂度为O(log2(n)*n)
其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变
成交换法(由于使用了递归,情况更糟),但是糟糕的情况只会持续一个流程,到下一个流程的时候就很可能已经避开了该中间的最大和最小值,因为数组下标变化了,于是中间值不在是那个最大或者最小值。但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。实践证明,大多数的情况,快速排序总是最好的。
如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢
于快速排序(因为要重组堆)。

 

 

二、        归并排序(两种实现方法均要掌握)   【稳定的】

 

归并排序是一种极好的外部排序方法,即针对数据保存在磁盘上而不是高速内存中的问题。

 

//以下程序参考数据结构课本P286页的模板,为使用指针链表实现的

#include <iostream>

using namespace std;

 

struct node{       //链表的节点数据

    int value;

    node *next;

};

 

node * divide_from( node * head )

{

    node * position, *midpoint, * second_half;

    if( (midpoint=head) == NULL ) //List is empty

        return NULL;

    position =midpoint->next;

    while( position != NULL ) //Moveposition twice for midpoint's one move

    {

        position =position->next;

        if( position != NULL )

        {

            midpoint =midpoint->next;

            position =position->next;

        }      

    }

    second_half =  midpoint->next;

    midpoint->next =NULL; //在这里将原链拆断,分为两段

    return second_half;

}

 

node * merge( node * first, node * second)

{

    node * last_sorted; //当前已经链接好的有序链中的最后一个节点

    node combined;      //哑节点

    last_sorted =&combined;

    while( first!=NULL && second!=NULL )

    {

        if( first->value < second->value ) {

            last_sorted->next= first;

            last_sorted= first;

            first =first->next;

        }else {

            last_sorted->next= second;

            last_sorted= second;

            second =second->next;

        }

    }

    if( first==NULL )

        last_sorted->next= second;

    else

        last_sorted->next= first;

    return combined.next; //返回哑节点的后继指针,即为合并后的链表的头指针

}

 

//这里的参数必须是引用调用,需要这个指引去允许函数修改调用自变量

void MergeSort( node * &head)

{

    if( head != NULL && head->next != NULL ) //如果只有一个元素,则不需排序

    {

        node *second_half = divide_from( head );

        MergeSort( head);

        MergeSort( second_half);

        head = merge(head, second_half );

    }

}

 

int main()

{

    node a,b,c,d;

    node *p1, *p2, *p3,*p4,*head;

    p1 = &a;

    p2 = &b;

    p3 = &c;

    p4 = &d;

    a.value = 2;

    b.value = 4;

    c.value = 3;

    d.value = 1;

    a.next = p2;

    b.next = p3;

    c.next = p4;

    d.next = NULL;

    //调用归并排序前的结果

    head = p1;

    while( head != NULL )

    {

        cout<<head->value<<" ";

        head =head->next;

    }

    cout<<endl;

    MergeSort( p1 );

    //调用归并排序后的结果

    head = p1;

    while( head != NULL )

    {

        cout<<head->value<<" ";

        head =head->next;

    }

    cout<<endl;

}

 

//以下程序为使用数组实现的归并排序,辅助空间复杂度为O(n)

 

#include <iostream>

using namespace std;

 

void Merge( int data[], int left, int mid, int right )

{

    int n1,n2,k,i,j;

    n1 = mid - left + 1;

    n2 = right - mid;

    int *L = new int[n1];  //两个指针指向两个动态数组的首地址

    int *R = new int[n2];

    for( i=0,k=left; i<n1; i++,k++)

        L[i] = data[k];

    for( i=0,k=mid+1; i<n2; i++,k++)

        R[i] = data[k];

    for( k=left,i=0,j=0; i<n1 && j<n2; k++){

        if( L[i] < R[j] ) { //取小者放前面

            data[k] =L[i];

            i++;

        } else {

            data[k] =R[j];

            j++;

        }

    }

    if( i<n1 )  //左边的数组尚未取尽

        for( j=i; j < n1; j++,k++)

            data[k] =L[j];

else

    //if( j<n2 ) //右边的数组尚未取尽  ,这句话可要可不要

        for( i=j; i<n2; i++,k++)

            data[k] =R[i];

delete []L;   //回收内存

    delete []R;

}

/*

*   left:数组的开始下标,一般为0;right:数组的结束下标,一般为 (n-1)

*/

 

void MergeSort( int data[], int left, int right )

{

    if( left < right )

    {

        int mid = left + ( right-left ) / 2; //mid=(right+left)/2,防止溢出

        MergeSort( data,left, mid );

        MergeSort( data, mid+1, right );

        Merge( data ,left, mid , right );

    }

}

 

int main()

{

    int data[] = {9,8,7,2,5,6,3,55,1};

    //排序前的输出

    for(int i=0; i<9;i++)

        cout<<data[i]<<" ";

    cout<<endl;

    MergeSort( data, 0,8);

    //排序后的输出

    for(int i=0; i<9;i++)

        cout<<data[i]<<" ";

    cout<<endl;

}

 

 

三、        堆排序     【不稳定的】

 

/*

*   向堆中插入current元素的函数

*/

void insert_heap( int data[], const int &current, intlow, int high )

{

    int large;  //元素data[low]左右儿子中,大者的位置

    large = 2*low + 1;

    while( large <= high ) {

        if( large < high && data[large] < data[large+1] ) 

            large++;

        if( current > data[ large ] ) //待插入元素的值比它的两个儿子都大

            break;

        else {

            data[ low ]= data[ large ]; //将其左右儿子的大者上移

            low = large;

            large = 2 *large + 1;

        }

    }

    data[ low ] =current;

}

/*

*   建立堆函数,num为数组data的元素个数

*   只有一个结点的<2-树>自动满足堆的属性,因此不必担心树中的任何树叶,即

*   不必担心表的后一半中的元素。如果从表的中间点开始并从后向前工作,就

*   能够使用函数insert_heap去将每个元素插入到包含了所有后面元素的部分堆

*   中,从而创建完整的堆。

*/

void build_heap( int data[], int num )

{  

    int current;

    for( int low = num/2- 1; low>=0; low-- ) {

        current = data[low ];

        insert_heap(data, current, low, num-1 );

    }

}

/*

*   堆排序主函数,num为数组data的元素个数

*/

void heap_sort( int data[], int num )

{

    int current, last_sorted;

    build_heap( data,num );    //建立堆

    for( last_sorted = num-1; last_sorted>0;last_sorted-- ) { //逐个元素处理

        current = data[last_sorted ];

//data[0]在整个数组排序结束前,存储的是待排序元素中最大的元素

        data[last_sorted]= data[0];

        insert_heap(data, current, 0, last_sorted-1 );

    }

}

int main()

{

    //用于排序算法的输入输出

    int a[8] = {5,7,1,2,9,4,6,3,};

    for(int i=0; i< sizeof(a)/sizeof(int); i++)

        cout<<a[i]<<"";

    cout<<endl;

    heap_sort( a, 8 );  //调用堆排序

    for(int i=0; i< sizeof(a)/sizeof(int); i++)

        cout<<a[i]<<"";

    cout<<endl;

    return 0;

}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值