八种排序算法总结之C++版本
五种简单排序算法
一、 冒泡排序 【稳定的】
void BubbleSort( int* a,int Count ) //实现从小到大的最终结果
{
int temp;
for(int i=1;i<Count; i++) //外层每循环一次,将最小的一个移动到最前面
for(int j=Count-1;j>=i; j--)
if( a[j] < a[j-1] )
{
temp =a[j];
a[j] =a[j-1];
a[j-1] =temp;
}
}
现在注意,我们给出O方法的定义:
若存在一常量K和起点n0,使当n>=n0时,有f(n)<=K*g(n),则f(n) = O(g(n))。(呵呵,不要说没学好数学呀,对于编程数学是非常重要的!!!)
现在我们来看1/2*(n-1)*n,当K=1/2,n0=1,g(n)=n*n时,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n) =O(g(n))=O(n*n)。所以我们程序循环的复杂度为O(n*n)。
二、 交换排序 【稳定的】
void ExchangeSort( int *a,int Count)
{
int temp;
for(int i=0;i<Count-1; i++)
for(int j=i+1;j<Count; j++)
if( a[j] < a[i] )
{
temp =a[j];
a[j] =a[i];
a[i] =temp;
}
}
时间复杂度为O(n*n)。
三、 选择法 【不稳定的】
void SelectSort( int *a,int Count)
{
int temp; //一个存储值
int pos; //一个存储下标
for(int i=0;i<Count; i++)
{
temp = a[i];
pos = i;
for(int j=i+1;j<Count; j++)
if( a[j] < temp ) //选择排序法就是用第一个元素与最小的元素交换
{
temp =a[j];
pos = j; //下标的交换赋值,记录当前最小元素的下标位置
}
a[pos] = a[i];
a[i] = temp;
}
}
遗憾的是算法需要的循环次数依然是1/2*(n-1)*n。所以算法复杂度为O(n*n)。
我们来看他的交换。由于每次外层循环只产生一次交换(只有一个最小值)。所以f(n)<=n
所以我们有f(n)=O(n)。所以,在数据较乱的时候,可以减少一定的交换次数。
四、 插入法 【稳定的】
void InsertSort( int *a,int Count)
{
int temp; //一个存储值
int pos; //一个存储下标
for(int i=1;i<Count; i++) //最多做n-1趟插入
{
temp = a[i]; //当前要插入的元素
pos = i-1;
while( pos>=0 && temp<a[pos] )
{
a[pos+1] =a[pos]; //将前一个元素后移一位
pos--;
}
a[pos+1] = temp;
}
}
其复杂度仍为O(n*n)。
最终,我个人认为,在简单排序算法中,直接插入排序是最好的。
五、 希尔排序法 【不稳定的】
* 希尔排序,n为数组的个数
*/
void ShellSort( int arr[], int n )
{
int temp,pos;
int d = n; //增量初值
do{
d = d/3 + 1 ;
for(int i= d;i<n; i++ )
{
temp =arr[i];
pos = i-d;
while(pos>=0 && temp < arr[pos] ) { //实现增量为d的插入排序
arr[ pos+ d ] = arr[pos];
pos -=d;
}
arr[ pos + d] = temp;
}
} while( d > 1 );
}
三种高级排序算法
一、 快速排序 辅助空间复杂度为O(1) 【不稳定的】
void QuickSort( int *a,int left, int right)
{
int i,j,middle,temp;
i = left;
j = right;
middle = a[(left+right)/2 ];
do
{
while( a[i]<middle && i<right ) //从左扫描大于中值的数
i++;
while( a[j]>middle && j>left ) //从右扫描小于中值的数
j--;
if( i<=j ) //找到了一对值
{
temp = a[i];
a[i] = a[j];
a[j] = temp;
i++;
j--;
}
} while ( i<j ); //如果两边的下标交错,就停止(完成一次)
//当左半边有值(left<j),递归左半边
if( left < j )
QuickSort( a,left, j);
//当右半边有值(right>i),递归右半边
if( i < right )
QuickSort( a, i,right);
}
它的工作看起来象一个二叉树。首先我们选择一个中间值middle,程序中我们使用数组中间值,然后把比它小的放在左边,大的放在右边(具体的实现是从两边找,找到一对后交换)。然后对两边分别使用这个过程(最容易的方法——递归)。注意,由于数据的随机性,对middle的选择并不会影响该算法的效率。
注意,在扫描过程中,对于给定参考值,对于向右(左)扫描,如果扫描值大(小)于或等于参考值,就需要进行交换。最终得到的结果是,j左边的值都小于参考值,而i右边的值都大于参考值,j和i之间的值都等于参考值。对j左边和i右边的分别使用递归,就可以完成最终的排序。
这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况
1.数组的大小是2的幂,这样分下去始终可以被2整除。假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......
所以共有n+2(n/2)+4(n/4)+...+n*(n/n)= n+n+n+...+n=k*n=log2(n)*n
所以算法复杂度为O(log2(n)*n)
其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变
成交换法(由于使用了递归,情况更糟),但是糟糕的情况只会持续一个流程,到下一个流程的时候就很可能已经避开了该中间的最大和最小值,因为数组下标变化了,于是中间值不在是那个最大或者最小值。但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。实践证明,大多数的情况,快速排序总是最好的。
如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢
于快速排序(因为要重组堆)。
二、 归并排序(两种实现方法均要掌握) 【稳定的】
归并排序是一种极好的外部排序方法,即针对数据保存在磁盘上而不是高速内存中的问题。
//以下程序参考数据结构课本P286页的模板,为使用指针链表实现的
#include <iostream>
using namespace std;
struct node{ //链表的节点数据
int value;
node *next;
};
node * divide_from( node * head )
{
node * position, *midpoint, * second_half;
if( (midpoint=head) == NULL ) //List is empty
return NULL;
position =midpoint->next;
while( position != NULL ) //Moveposition twice for midpoint's one move
{
position =position->next;
if( position != NULL )
{
midpoint =midpoint->next;
position =position->next;
}
}
second_half = midpoint->next;
midpoint->next =NULL; //在这里将原链拆断,分为两段
return second_half;
}
node * merge( node * first, node * second)
{
node * last_sorted; //当前已经链接好的有序链中的最后一个节点
node combined; //哑节点
last_sorted =&combined;
while( first!=NULL && second!=NULL )
{
if( first->value < second->value ) {
last_sorted->next= first;
last_sorted= first;
first =first->next;
}else {
last_sorted->next= second;
last_sorted= second;
second =second->next;
}
}
if( first==NULL )
last_sorted->next= second;
else
last_sorted->next= first;
return combined.next; //返回哑节点的后继指针,即为合并后的链表的头指针
}
//这里的参数必须是引用调用,需要这个指引去允许函数修改调用自变量
void MergeSort( node * &head)
{
if( head != NULL && head->next != NULL ) //如果只有一个元素,则不需排序
{
node *second_half = divide_from( head );
MergeSort( head);
MergeSort( second_half);
head = merge(head, second_half );
}
}
int main()
{
node a,b,c,d;
node *p1, *p2, *p3,*p4,*head;
p1 = &a;
p2 = &b;
p3 = &c;
p4 = &d;
a.value = 2;
b.value = 4;
c.value = 3;
d.value = 1;
a.next = p2;
b.next = p3;
c.next = p4;
d.next = NULL;
//调用归并排序前的结果
head = p1;
while( head != NULL )
{
cout<<head->value<<" ";
head =head->next;
}
cout<<endl;
MergeSort( p1 );
//调用归并排序后的结果
head = p1;
while( head != NULL )
{
cout<<head->value<<" ";
head =head->next;
}
cout<<endl;
}
//以下程序为使用数组实现的归并排序,辅助空间复杂度为O(n)
#include <iostream>
using namespace std;
void Merge( int data[], int left, int mid, int right )
{
int n1,n2,k,i,j;
n1 = mid - left + 1;
n2 = right - mid;
int *L = new int[n1]; //两个指针指向两个动态数组的首地址
int *R = new int[n2];
for( i=0,k=left; i<n1; i++,k++)
L[i] = data[k];
for( i=0,k=mid+1; i<n2; i++,k++)
R[i] = data[k];
for( k=left,i=0,j=0; i<n1 && j<n2; k++){
if( L[i] < R[j] ) { //取小者放前面
data[k] =L[i];
i++;
} else {
data[k] =R[j];
j++;
}
}
if( i<n1 ) //左边的数组尚未取尽
for( j=i; j < n1; j++,k++)
data[k] =L[j];
else
//if( j<n2 ) //右边的数组尚未取尽 ,这句话可要可不要
for( i=j; i<n2; i++,k++)
data[k] =R[i];
delete []L; //回收内存
delete []R;
}
/*
* left:数组的开始下标,一般为0;right:数组的结束下标,一般为 (n-1)
*/
void MergeSort( int data[], int left, int right )
{
if( left < right )
{
int mid = left + ( right-left ) / 2; //mid=(right+left)/2,防止溢出
MergeSort( data,left, mid );
MergeSort( data, mid+1, right );
Merge( data ,left, mid , right );
}
}
int main()
{
int data[] = {9,8,7,2,5,6,3,55,1};
//排序前的输出
for(int i=0; i<9;i++)
cout<<data[i]<<" ";
cout<<endl;
MergeSort( data, 0,8);
//排序后的输出
for(int i=0; i<9;i++)
cout<<data[i]<<" ";
cout<<endl;
}
三、 堆排序 【不稳定的】
/*
* 向堆中插入current元素的函数
*/
void insert_heap( int data[], const int ¤t, intlow, int high )
{
int large; //元素data[low]左右儿子中,大者的位置
large = 2*low + 1;
while( large <= high ) {
if( large < high && data[large] < data[large+1] )
large++;
if( current > data[ large ] ) //待插入元素的值比它的两个儿子都大
break;
else {
data[ low ]= data[ large ]; //将其左右儿子的大者上移
low = large;
large = 2 *large + 1;
}
}
data[ low ] =current;
}
/*
* 建立堆函数,num为数组data的元素个数
* 只有一个结点的<2-树>自动满足堆的属性,因此不必担心树中的任何树叶,即
* 不必担心表的后一半中的元素。如果从表的中间点开始并从后向前工作,就
* 能够使用函数insert_heap去将每个元素插入到包含了所有后面元素的部分堆
* 中,从而创建完整的堆。
*/
void build_heap( int data[], int num )
{
int current;
for( int low = num/2- 1; low>=0; low-- ) {
current = data[low ];
insert_heap(data, current, low, num-1 );
}
}
/*
* 堆排序主函数,num为数组data的元素个数
*/
void heap_sort( int data[], int num )
{
int current, last_sorted;
build_heap( data,num ); //建立堆
for( last_sorted = num-1; last_sorted>0;last_sorted-- ) { //逐个元素处理
current = data[last_sorted ];
//data[0]在整个数组排序结束前,存储的是待排序元素中最大的元素
data[last_sorted]= data[0];
insert_heap(data, current, 0, last_sorted-1 );
}
}
int main()
{
//用于排序算法的输入输出
int a[8] = {5,7,1,2,9,4,6,3,};
for(int i=0; i< sizeof(a)/sizeof(int); i++)
cout<<a[i]<<"";
cout<<endl;
heap_sort( a, 8 ); //调用堆排序
for(int i=0; i< sizeof(a)/sizeof(int); i++)
cout<<a[i]<<"";
cout<<endl;
return 0;
}