SWAP农业模型数据制备、敏感性分析及气候变化影响

14 篇文章 0 订阅
7 篇文章 0 订阅

SWAP模型的各个组成部分,包括气象、土壤、作物和管理措施等数据的准备和输入。通过模型的实践操作和结果分析,让参与者能够不仅理解模型背后的科学原理,同时掌握如何在实际工作中应用模型来解决问题。此外,还将深入探讨如何通过修改模型代码来定制和优化模型,以适应特定的研究需求或解决特定的农业问题。

专题一、SWAP模型介绍及数据要求

1.SWAP模型理论框架

2.Richard方程与水分循环

3.溶质输运与土壤温度计算

4.作物生长模块

5.模型输入数据要求

6.模型应用范围与实例

7.与其它类似模型的比较(优缺点)

图片

专题二、数据制备与模型运行

1.气象数据制备

2.土壤数据制备

3.农作物参数详解

4.灌溉的输入

5.其它情况处理(降雪等)

5.模型输出分析

案例1:牧草生长模拟

案例2:春小麦生长模拟与灌溉需水分析

图片

专题三、基于R模型敏感性分析与贝叶斯优化

1.R语言中调用SWAP模型

2.敏感性分析方法(Morris方法)

3.优化及启发式优化算法理论

4.贝叶斯优化方法

案例3:基于遗传算法SWAP模型参数自动优化

案例4:SWAP参数敏感性代码分析

案例5:基于贝叶斯优化的SWAP模型自动优化

专题四、基于Fortran源代码分析

1.现代Fortran基础

2.SWAP模型Fortran代码编译方法(WINDOWS及Linux)

3.SWAP模型代码特点及结构分析

案例6:模型入口分析

案例7:模型主要计算功能实现

图片

专题五、气候数据降尺度与变化影响分析

1.CMIP计划及下载

2.气候数据降尺度方法

3.未来气候数据的生成(基于CMIP5及CMIP6)及其输入

案例8:基于R语言的降尺度方法

案例9:不同未来气候情景对水稻生产的影响分析

专题六、AI大语言模型在建模中的应用

1.各类大语言模型的优点与缺点分析

2.在建模中应用大语言模型辅助生成输入文件

3.本地大语言模型及知识库的简单配置

4.对于(水环境、水文及农业)模型研究者在大语言模型上的发展方向建议

案例10:运用大语言模型解释模型输入参数

案例11:运用大语言模型辅助生成输入文件

案例12:运用大语言模型注释及编写代码

原文链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值