摘要
为了减少传输的数据量,最近提出了一种基于特征图的融合方法,作为自动驾驶汽车协同三维目标检测的实用解决方案。然而,物体检测的精度可能需要显著提高,尤其是对于远处或被遮挡的物体。为了解决自动驾驶汽车和人类安全的这一关键问题,我们提出了一种用于自动驾驶汽车的协作空间特征融合(CoFF)方法,以有效地融合特征图,从而实现更高的3D对象检测性能。特别地,CoFF基于接收到的特征图提供了多少新的语义信息来区分特征图之间的权重,以进行更有指导的融合。它还增强了与远处/被遮挡物体相对应的不明显特征,以提高其检测精度。实验结果表明,与以前的特征融合解决方案相比,CoFF在自动驾驶汽车的检测精度和有效检测范围方面都有了显著提高。
引言
与原始传感器数据不同,特征图难以解释,这增加了设计有效的融合机制以进行协同三维目标检测的难度。为了解决这一挑战,我们研究了接收到的特征地图的重要性如何受到生成特征地图的车辆距离的影响。我们称这种方法为“协同空间特征融合”。我们假设由远程车辆生成的特征地图可以显著提高当前车辆的目标检测,特别是在识别远程目标方面。此外,如果能够减少或去除特征映射中的噪声信号,则有望获得更好的目标检测结果。为此,我们提出了一种新的协同空间特征融合机制,用于自动驾驶汽车有效地融合特征地图,实现精确的三维目标检测。
在设计空间特征融合方法时,需要克服两大技术难题。
- 第一个挑战是如何识别和减少由不同车辆生成的错误融合特征地图对目标检测的负面影响。这个问题在现有的工作中被忽略了[1](F-Cooper),因为它没有考虑特征映射以错误的方式融合时是如何相互影响的。前面的工作采用的底层融合函数是maxout