【论文解读】CoFF: Cooperative Spatial Feature Fusion for 3D Object Detection on Autonomous Vehicles

文章提出了一种名为CoFF的方法,通过考虑接收到的特征图的新语义信息和增强远处/遮挡物体的特征,有效融合特征图,显著提高自动驾驶汽车的3D目标检测精度和范围。与F-Cooper方法相比,CoFF在减少数据量的同时表现出更好的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

为了减少传输的数据量,最近提出了一种基于特征图的融合方法,作为自动驾驶汽车协同三维目标检测的实用解决方案。然而,物体检测的精度可能需要显著提高,尤其是对于远处或被遮挡的物体。为了解决自动驾驶汽车和人类安全的这一关键问题,我们提出了一种用于自动驾驶汽车的协作空间特征融合(CoFF)方法,以有效地融合特征图,从而实现更高的3D对象检测性能。特别地,CoFF基于接收到的特征图提供了多少新的语义信息来区分特征图之间的权重,以进行更有指导的融合。它还增强了与远处/被遮挡物体相对应的不明显特征,以提高其检测精度。实验结果表明,与以前的特征融合解决方案相比,CoFF在自动驾驶汽车的检测精度和有效检测范围方面都有了显著提高。

引言

与原始传感器数据不同,特征图难以解释,这增加了设计有效的融合机制以进行协同三维目标检测的难度。为了解决这一挑战,我们研究了接收到的特征地图的重要性如何受到生成特征地图的车辆距离的影响。我们称这种方法为“协同空间特征融合”。我们假设由远程车辆生成的特征地图可以显著提高当前车辆的目标检测,特别是在识别远程目标方面。此外,如果能够减少或去除特征映射中的噪声信号,则有望获得更好的目标检测结果。为此,我们提出了一种新的协同空间特征融合机制,用于自动驾驶汽车有效地融合特征地图,实现精确的三维目标检测。
在设计空间特征融合方法时,需要克服两大技术难题。

  • 第一个挑战是如何识别和减少由不同车辆生成的错误融合特征地图对目标检测的负面影响。这个问题在现有的工作中被忽略了[1](F-Cooper),因为它没有考虑特征映射以错误的方式融合时是如何相互影响的。前面的工作采用的底层融合函数是maxout
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值