吴恩达深度学习笔记(四)week4人脸识别

人脸检测和人脸识别

这里写图片描述

一次学习(one shot learning)

这种情况一般是学习一个相似函数来比对两张图片的相似性,如下图所示 ,比较两张图片的区别,区别越大则输出越大,当输出小于某个阈值时可认为是同一个人。
这里写图片描述

siamese网络

这里写图片描述
这里写图片描述
siamese网络就是要使若输入图片是同一个人的话,范数差的平方要尽可能的小,不是同一个人时,尽可能的大。

三元组损失(Triplet loss)

为了实现上面的Siamese网络,定义如下三元组损失函数,其中 α α 是间距(类似支持向量机),当绿框中的函数值小于0时则误差为0,大于0时则为该值。 A A 代表目标对象,P代表与目标对象是同一个人, N N <script type="math/tex" id="MathJax-Element-6">N</script>代表与目标对象不是同一个人。
这里写图片描述
实际上绿框中的公式小于0是很容易满足的,所以选取三元组时应尽量使图片相似。
这里写图片描述
这里写图片描述

面部特征与二分类

如下图所示,可以在网络最后一层加一层逻辑回归,使人脸检测转化为二分类问题,实际中可以将员工的特征编码存储起来,不必每次都重新计算。
这里写图片描述

神经风格迁移

这里写图片描述

深度卷积网络在学什么

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值