人脸检测和人脸识别
一次学习(one shot learning)
这种情况一般是学习一个相似函数来比对两张图片的相似性,如下图所示 ,比较两张图片的区别,区别越大则输出越大,当输出小于某个阈值时可认为是同一个人。
siamese网络
siamese网络就是要使若输入图片是同一个人的话,范数差的平方要尽可能的小,不是同一个人时,尽可能的大。
三元组损失(Triplet loss)
为了实现上面的Siamese网络,定义如下三元组损失函数,其中
α
α
是间距(类似支持向量机),当绿框中的函数值小于0时则误差为0,大于0时则为该值。
A
A
代表目标对象,代表与目标对象是同一个人,
N
N
<script type="math/tex" id="MathJax-Element-6">N</script>代表与目标对象不是同一个人。
实际上绿框中的公式小于0是很容易满足的,所以选取三元组时应尽量使图片相似。
面部特征与二分类
如下图所示,可以在网络最后一层加一层逻辑回归,使人脸检测转化为二分类问题,实际中可以将员工的特征编码存储起来,不必每次都重新计算。
神经风格迁移