数据仓库模型分层

本文详细探讨了数据仓库的模型分层,包括源系统、ODS、DW、BI等层次,阐述了各层的功能与作用,以及如何在大数据背景下进行有效数据整合和处理,以支持高效的数据分析和决策。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

层级 细分 建模方法 说明
ODS   和业务表保持结构一致

同步业务源数据到数仓

DW   实体关系模型
类三范式和雪花模型建模

规划主题域、整合实体和关系;

规范化表名、字段名、字段备注等;

清洗脏数据;

生成通用字典表(地理、时间等);

包含所有业务数据、历史数据

DM dmd 维度建模(星型模型) 按照业务主题整合事实表和维度表;
为了使用方便、明确,放弃雪花模型,以DW的实体和关系组合各种维度表的星型模型
dm  计算模型 基于dmd层开发各种维度的计算指标,以聚合指标为主,也包含一些明细指标
dm_long 长表模型

每一个主题只有一张表,汇总该主题下所有的数据指标;

将指标信息维护在同一的维度字典表(dim_feature_info)中,提供统一管理、使用入口;

适用于聚合指标比较多的主题,可以直接作为dm_wide层的唯一源表;

在dm_wide更新速度跟不上时,直接作为源表支持APP层

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值