partial transfer learning文章总结(四)

第三篇:Importance Weighted Adversarial Nets for Partial Domain Adaptation
这篇文章是目前为止partial transfer learning的最后一篇文章,这篇文章的总体思路与上两篇文章是一致的,也是通过首先减小不在源域和目标域共同类别区域的数据样本,同时增大在两域共同类别区域的数据样本,将partial transfer learning问题转化为传统的迁移学习问题。虽然总思路一样,但是具体处理思路与细节与前两篇并不一样,下面分别从网络架构与损失函数两个角度来考虑这个问题。
首先先看网络架构
AWIN网络架构这一篇文章提出的网络架构与前两个不是很相同,但是依然是基于DaNN网络做的改进,这里Xs与Xt分别表示源域与目标域的样本,Fs与Ft分别为源域与目标域的特征提取器,最后输出的为源域与目标域的特征向量,这里需要经过第一个特征鉴别器D,这个D是用来衡量源域与目标域样本的差异性,其表达式是
在这里插入图片描述
这里Ps与Pt分别表示输入样本属于源域和目标域的概率,则D表示的就是属于源域但不属于目标域的概率,所以w(z)为
在这里插入图片描述
表示这一点属于源域类且属于目标域类的可能性,w(z)越大表示既属于源域类又属于目标域类可能性越大,越小表示越大的可能属于源域类而不属于目标域类别,即通过w(z)表征样本类别权重的分配情况。这样经过权重处理的样本进入第二个域特征提取器,我们知道域适应特征提取器的表达式是
在这里插入图片描述
第一项是源域特征,第二项表征目标域特征,目的是使这一项最小,从而使其无法辨别特征来自源域还是目标域,从而提取到共同特征,在第二个域特征提取器里,其表达式里的源域特征前每一个不同样本均加上了一个权重系数w(z),这个的作用就是表示这个样本属不属于目标域类,从而有效将属于源域类但不属于目标域类的样本剔除。这样第二个域特征提取器的表达式就是:
在这里插入图片描述
这里在第二项损失函数里又加了一项在这里插入图片描述
这一项的作用是使熵最小化,所谓熵最小化,就是使每一项均最后只收敛到一个类别,使目标域的类别少,数据稳定,这样第二项总的损失函数就是
在这里插入图片描述
这里γ与λ均是表示比例系数。
最后总结一下这个网络训练步骤:首先,先用源域数据做有监督学习,训练完后,将这一度使用的特征提取器作为Fs以及Ft的初始化权重,再将源域数据与源域数据同时输入,来通过两个域鉴别器,来进行训练,第一个判断来自共同域类的可能,作为权重附在源域样本上,再将带有权重源域样本和目标域样本通过第二个域鉴别器减小训练,获取共同特征。从而最后转化为传统迁移学习问题进行训练。
这就是这篇文章的主体思想。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值