参考文章:http://edpflager.com/?p=1642
最近有一个调优的项目设计到MongoDB数据转移到Mysql库进行数据分析。
以下是利用kettle对数据的转换的介绍:
1:MongoDb的查询:
数据集是
由于带有时间戳timestamp,可以在kettle中基于时间戳对其增量读取。
2:kettle对于这种非关系型的数据库的设置主要是利用bigdata的控件:
配置如下:
1)mongodb的数据集
2)query 查询语句
由于利用时间戳进行增量查询,
所以利用了两个变量${STARTDATE},${ENDDATE}来控制时间窗的大小。
3.将数据流传入到json输入中,将其转化为标准格式:
Path的书写格式是:
$.uid:uid是指mongodb中的项uid,
$ :代表根目录
. :代表子节点
[]:数组节点
由于在mongodb中uid是直接挂在根目录下的子节点中,所以其路径为$.uid,actionID依次类似。
例:
{"data" :{
"museum":[
{
"country":"italy",
"city": "Vencie",
"id_museum":"109",
"name":"pa"},
{
"country":"Mexico",
"city": "Mexico city",
"id_museum":"36",
"name":"Musre"}
]
}
}
$..city表明元素city是在根节点下data节点内的museum节点内。
$.data.museum[1].city表明指定的元素,即上述museum数组第二个节点的city值
数据读取流程图:
JOB的流程如下: