案例实践 --- Resnet经典卷积神经网络(Mindspore)

目录

前言

调用Model高阶API进行训练和保存模型文件 

Resnet18网络结构 

图解

代码详解----基于Jupternotebook

案例补充


前言

本案例实践参考AI Gallery-开发者-华为云

因为神经网络训练步骤类似,就只总结相关代码和Resnet18网络结构。

类似训练步骤可参考http://t.csdn.cn/SSmos

调用Model高阶API进行训练和保存模型文件 

此部分按照AI Gallery-开发者-华为云案例实践做的笔记,原代码详解很清楚,不理解可以官网查找Model API的详解——mindspore — MindSpore master documentation

import os,time
from mindspore import Model
from mindspore import load_checkpoint, load_param_into_net
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor

model = Model(network, loss_fn = net_loss, optimizer = net_opt, metrics = {'acc'}) #完成Model初始化

#训练参数
batch_num = mnist_ds_train.get_dataset_size() #训练数据集的规模
max_epochs = 1    #训练轮数

model_path = "./model/ckpt"  #训练好模型保存路径
os.system('rm -f {0}*.ckpt {0}*.meta {0}*.pb'.format(model_path))  #rm -f --->强制删除文件或者目录

#定义回调函数
config_ck = CheckpointConfig(save_checkpoint_steps=batch_num, keep_checkpoint_max=35)  #对ckpt的配置 保存步骤、保存最多ckpt文件数
ckpoint_cb = ModelCheckpoint(prefix="train_resnet_mnist", directory=model_path, config=config_ck)  #保存训练结束后的模型和参数

loss_cb = LossMonitor(batch_num)  # 用于输出损失
start_time = time.time()
model.train(max_epochs, mnist_ds_train, callbacks=[ckpoint_cb, loss_cb])  # 训练
res = model.eval(mnist_ds_test)  # 验证测试集
print("result: ", res)
cost_time = time.time() - start_time
print("训练总耗时: %.1f s" % cost_time)

Resnet18网络结构 

图解

【参考这位博主的文章http://t.csdn.cn/83wbR

  

代码详解----基于Jupternotebook

第一步,构建一个残差单元

根据结构可知,每个残差单元不同的在于输入、输出通道数步长,因此将这三个变量作为初始化参数 。

import mindspore.nn as nn
#构建一个残差单元
class basic_res(nn.Cell):
    """
    需要设置的参数:
    input_channels, output_channels, stride
    """
    def __init__(self, input_channels, output_channels, stride = 1):
        super(basic_res, self).__init__()
        self.conv1 = nn.Conv2d(in_channels = input_channels, out_channels = output_channels, kernel_size = 3, stride = stride, pad_mode="same")
        self.bn = nn.BatchNorm2d(output_channels)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(in_channels = output_channels, out_channels = output_channels, kernel_size = 3, stride = 1, pad_mode="same") #第二个卷积层的步长都为1,不需要人为设置
        self.downsample = nn.Conv2d(in_channels = input_channels, out_channels = output_channels, kernel_size = 1, stride = stride, pad_mode="same") #保证残差的输入shape与残差输出shape相同
    def construct(self, x):
        out = self.conv1(x)
        out = self.bn(out)
        out = self.relu(out)
        out = self.conv2(out)
        identity = self.downsample(x)
        
        out = out + identity
        out = self.relu(out)
        
        return out 

第二步,构建残差结构 

在Resnet18结构中,每一个残差结构由两个残差单元组成,观察第二幅图示结构,可知,除了第一个残差结构外,后面三个残差结构中第一个残差单元步长均变为了2,因此只有第一个残差单元的步长需要设置。

#堆叠残差单元构建成一个残差结构
def build_res(input_channels, output_channels,blocks, stride = 1):
    
    res_build = nn.SequentialCell()
    
    res_build.append(basic_res(input_channels, output_channels, stride = stride)) #第一个残差单元步长会改变,为2,具有下采样功能
    
    for _ in range(1, blocks):
        res_build.append(basic_res(output_channels, output_channels, stride = 1))#在一个残差结构里,除了第一个残差单元,后面步长均为1
    
    return res_build

 第三步,构建残差网络

基于定义好的残差结构,现在只需根据图式结构,构建输入层、隐藏层、输出层,设置相应的参数,便能搭建出Resnet18网络结构。 

#构建残差网络
from mindspore import nn

class Resnet(nn.Cell):
    
    def __init__(self, layer_dims, num_classes):
        super(Resnet, self).__init__()
        
        #输入层--对原始输入进行卷积池化等预处理
        self.stem = nn.SequentialCell([nn.Conv2d(3, 64,  7, 2, pad_mode='same'),  
                                nn.BatchNorm2d(64),      
                                nn.ReLU(),       
                                nn.MaxPool2d(3, 2, pad_mode='same')])
        #隐藏层---残差结构、卷积
        self.layer1 = build_res(64, 64, layer_dims[0])
        self.layer2 = build_res(64, 128, layer_dims[1], 2)
        self.layer3 = build_res(128, 256, layer_dims[2], 2)
        self.layer4 = build_res(256, 512, layer_dims[3], 2)
        
        #平均池化
        self.avgpool = nn.AvgPool2d(7, 1)
        
        #展开
        self.flatten = nn.Flatten()

        
        #全连接
        self.fc = nn.Dense(512, num_classes)
        
    def construct(self, x):
        #输入层
        out = self.stem(x)
        
        #隐藏层
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        
        #输出层
        out = self.avgpool(out)
        out = self.flatten(out)
        out = self.fc(out)
        
        return out      

第四步,实例化测试 

#定义好每一个残差结构中残差单元数目
layer_dims = [2,2,2,2]
#建立测试数据
from mindspore import Tensor
from mindspore import numpy as np
x = Tensor(np.ones([1,3,224,224]))
#实例化网络
resnet18 = Resnet(layer_dims, 10)
#输入数据
x_resnet18 = resnet18(x)

 输入数据x:

输出结果:

 Jupternotebook是真的很方便的进行代码调试,可以将搭建的结构拆开来,一步一步测试输入层、隐藏层和输出层,对于新手来说,非常有利于理解神经网络结构,以及检查数据在整个处理过程中的变化。

案例补充

在本案例中最后进行批量预测,因为较简单,但有几处需要理解一下,于是就稍做了一下总结

import numpy as np
from PIL import Image
import mindspore
import mindspore.ops as ops
from mindspore import Tensor

dic_ds_test = mnist_ds_test.create_dict_iterator(output_numpy = True) #创建迭代数据,返回字典类型,数据类型是数组
ds_test = next(dic_ds_test)  #取创建好的迭代数据

images_test = ds_test["image"]  
labels_test = ds_test["label"]

output = model.predict(Tensor(images_test))   #开始预测,返回一个每一类的预测分数
pred_labels = ops.Argmax(output_type=mindspore.int32)(output)  #返回预测分数中最大值的索引,即预测值


print("预测值 -- > ", pred_labels)  # 打印预测值
print("真实值 -- > ", labels_test)  # 打印真实值


batch_img = np.squeeze(images_test[0])
for i in range(1, len(labels_test)):
    batch_img = np.hstack((batch_img, np.squeeze(images_test[i])))  # 将一批图片水平拼接起来,方便下一步进行显示
Image.fromarray((batch_img*255).astype('uint8'), mode= "L")  # 显示真实值
  • next ()------我的理解是如果不采用next(),也可以遍历数据,当读到空元素时,不会检查到,可能会有问题,但使用next()时,遇到空元素,会自动终止并报错。详细原理可以参考:http://t.csdn.cn/OTTm2

预测结果显示:

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: Multi-scale-1D-ResNet是一种用于信号处理和时间序列分析的深度学习模型。它基于ResNet(残差网络)的架构,并通过引入多尺度特征来改进模型的性能。 在传统的ResNet中,每个块都具有相同的尺度,这可能会限制模型对不同频率的信号特征的捕捉。因此,Multi-scale-1D-ResNet通过添加具有不同滤波器长度的并行卷积层来引入多尺度,从而使模型能够更好地学习不同频率的特征。 具体来说,Multi-scale-1D-ResNet包括一系列块,每个块内部包含了一定数目的相同尺度的卷积层。但与传统ResNet不同的是,在每个块的最后,Multi-scale-1D-ResNet还引入了一组具有不同滤波器长度的卷积层。这些卷积层使得模型能够在多个尺度上建模,从而能够更好地捕捉信号中的关键特征。 在实际应用中,Multi-scale-1D-ResNet被广泛用于诊断和预测方面,例如医疗领域中的心电图(ECG)分析,智能交通领域中的交通流预测和自然语言处理领域中的文本分类等。 ### 回答2: multi-scale-1d-resnet是一种深度学习模型。它结合了多尺度信息和残差网络来处理1D信号(比如音频,生物医学信号等)。该模型包括了多个1D卷积层和池化层,以提取输入信号的不同尺度(比如音频信号的基频和谐波等)。同时,残差网络的加入可以有效地防止梯度消失问题,使得该模型能够训练更深的神经网络。 multi-scale-1d-resnet模型在许多应用领域都有广泛的应用,比如语音识别、心电图诊断等。因为1D信号具有时域关系,而且大多数情况下其与其他数据(如图像)没有直接的对应关系,所以需要一种特殊的模型来处理。multi-scale-1d-resnet模型的出现大大提高了这类问题的解决效率,具有很好的性能表现。 总之,multi-scale-1d-resnet是一种处理1D信号的深度学习模型,它集成了多尺度信息和残差网络,可以有效地提取1D信号的特征,以实现不同领域的应用。 ### 回答3: Multi-scale-1D-ResNet是一种深度学习模型,可以处理一维序列数据。该模型是在ResNet的基础上,加入了多尺度特征融合的机制。在传统的ResNet中,深度网络的信息流只有一个固定的尺度,而多尺度特征融合将不同尺度的特征进行融合,可以提高网络对不同尺度的信号的处理能力,提高模型的表达能力和泛化能力。 Multi-scale-1D-ResNet模型中,输入的一维时间序列数据首先通过多个卷积层提取特征,然后使用残差块将特征进行深层次的挖掘。在多尺度特征融合中,通过在不同的卷积层之间增加shortcut连接,将不同尺度的特征进行融合。同时,在全局池化层中,对不同尺度特征进行平均池化,得到融合后的特征表示。最后,通过全连接层将特征映射到输出维度,完成任务的预测。 Multi-scale-1D-ResNet适用于处理一维时间序列数据,如语音、信号、股票等数据。由于多尺度特征融合的机制,使得模型能够更好地处理不同尺度的信号分布,具有很强的泛化能力和适配性。同时,由于ResNet的残差块结构,可避免梯度消失等问题,能够训练更深层次的网络。因此,Multi-scale-1D-ResNet成为处理时间序列数据上的重要方法之一。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

swl.乌鸦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值