718. 最长重复子数组
53. 最大子序和
54. 螺旋矩阵
55. 跳跃游戏
56. 合并区间
---------------------------------分割线-----------------------------------------
718. 最长重复子数组
Difficulty: 中等
给两个整数数组 A
和 B
,返回两个数组中公共的、长度最长的子数组的长度。
示例 1:
输入:
A: [1,2,3,2,1]
B: [3,2,1,4,7]
输出: 3
解释:
长度最长的公共子数组是 [3, 2, 1]。
说明:
- 1 <= len(A), len(B) <= 1000
- 0 <= A[i], B[i] < 100
Solution:动态规划
(关键地方)定义状态:dp[i][j]是以A[i]和B[j] 结尾 的字母的最长子数组的长度,这样才需要更新状态
class Solution {
public int findLength(int[] A, int[] B) {
//定义状态:dp[i][j]是以A[i]和B[j]结尾的字母的最长子数组的长度吧,这样才需要更新状态
int[][] dp = new int[A.length+1][B.length+1];
int res = 0;
//初始化:[0][0]、[0][i]、[i][0]都是0
for(int i=1; i<=A.length; i++){
for(int j=1; j<=B.length; j++){
if(A[i-1] == B[j-1]) dp[i][j] = dp[i-1][j-1]+1;
else dp[i][j] = 0;
res = Math.max(dp[i][j], res);
}
}
return res;
}
}
53. 最大子序和
Difficulty: 简单
给定一个整数数组 nums
,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
Solution:num[i] 之前的还要不要
class Solution {
public int maxSubArray(int[] nums) {
int count = nums[0], sum = nums[0];
for(int i=1; i<nums.length; i++){
if(count > 0){ //之前的大于0,我就要着
count += nums[i];
}
else{ //否则就把之前的丢弃掉
count = nums[i];
}
sum = Math.max(sum, count); // 每次都找最大值
}
sum = Math.max(sum, count);
return sum;
}
}
54. 螺旋矩阵
Difficulty: 中等
给定一个包含 m x n 个元素的矩阵(m 行, n 列),请按照顺时针螺旋顺序,返回矩阵中的所有元素。
示例 1:
输入:
[
[ 1, 2, 3 ],
[ 4, 5, 6 ],
[ 7, 8, 9 ]
]
输出: [1,2,3,6,9,8,7,4,5]
示例 2:
输入:
[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9,10,11,12]
]
输出: [1,2,3,4,8,12,11,10,9,5,6,7]
Solution:确定四个角,这样方便遍历,注意:下 可能和 上 重复, 左 可能和 右 重复
class Solution {
public List<Integer> spiralOrder(int[][] matrix) {
List<Integer> res = new ArrayList<>();
int top, bottom, left, right, m, n;
m = matrix.length;
if(m <= 0) return res;
n = matrix[0].length;
if(n <= 0) return res;
// 固定四个角
top = 0;
left = 0;
bottom = m-1;
right = n-1;
while(top <= bottom && left <= right){ //一层一层的遍历
for(int i=left; i<=right; i++){ //上
res.add(matrix[top][i]);
}
for(int i=top+1; i<=bottom; i++){ //右
res.add(matrix[i][right]);
}
if(top != bottom){
for(int i=right-1; i>=left; i--){ //下,可能和上重复
res.add(matrix[bottom][i]);
}
}
if(left != right){
for(int i=bottom-1; i>top; i--){ //左,可能和右重复
res.add(matrix[i][left]);
}
}
top++;
bottom--;
left++;
right--;
}
return res;
}
}
55. 跳跃游戏
Difficulty: 中等
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个位置。
示例 1:
输入: [2,3,1,1,4]
输出: true
解释: 我们可以先跳 1 步,从位置 0 到达 位置 1, 然后再从位置 1 跳 3 步到达最后一个位置。
示例 2:
输入: [3,2,1,0,4]
输出: false
解释: 无论怎样,你总会到达索引为 3 的位置。但该位置的最大跳跃长度是 0 , 所以你永远不可能到达最后一个位置。
Solution:贪心算法,从右到左寻找最大的跳数
class Solution {
public boolean canJump(int[] nums) {
//贪心算法,从右到左寻找最大的跳数
int len = nums.length, index; //index表示当前位置
if(len <= 0) return false;
index = len-1;
while(index > 0){
int flag = index;
for(int i=index-1; i>=0; i--){
if(index-i <= nums[i]){
index = i;
}
}
if(flag == index) return false; //说明index没变过
}
return true;
}
}
56. 合并区间
Difficulty: 中等
给出一个区间的集合,请合并所有重叠的区间。
示例 1:
输入: [[1,3],[2,6],[8,10],[15,18]]
输出: [[1,6],[8,10],[15,18]]
解释: 区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].
示例 2:
输入: [[1,4],[4,5]]
输出: [[1,5]]
解释: 区间 [1,4] 和 [4,5] 可被视为重叠区间。
Solution:先对区间的第一维进行排序,然后找每个小区间的最大值和最小值
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Random;
class Solution {
public int[][] merge(int[][] intervals) {
List<int[]> res = new ArrayList<>();
int len = intervals.length;
if(len <= 0) return new int[0][2];
quickSort(intervals); //排序
//寻找小区间的最大值和最小值:
//最小值一定是第一个区间的左边
//最大值需要寻找
//如果某个区间的左边,大于之前的最大值,说明这个区间和之前就不可能合并
int low = intervals[0][0], high = intervals[0][1];
for(int i=1; i<len; i++){
if(high < intervals[i][0]){ //区间的左边大于之前的最大值,不能合并
int[] temp = new int[2];
temp[0] = low;
temp[1] = high;
res.add(temp);
low = intervals[i][0];
high = intervals[i][1];
}
else{
high = Math.max(high, intervals[i][1]);
}
}
int[] temp = new int[2];
temp[0] = low;
temp[1] = high;
res.add(temp);
int[][] val = new int[res.size()][2];
for(int i=0; i<res.size(); i++){
val[i] = res.get(i);
}
return val;
}
//---------------------随机快速排序--------------------------
public void quickSort(int[][] intervals){
sortHelp(intervals, 0, intervals.length-1);
}
Random random = new Random();
public void sortHelp(int[][] intervals, int low, int high){
if(low > high) return;
int flag = random.nextInt(high-low+1)+low; //生成(low, high)之间的随机数
int partition = intervals[flag][0];
swap(intervals, low, flag);
int l = low, h = high;
while(l < h){
while(l<h && intervals[h][0]>=partition){
h--;
}
if(l<h){
swap(intervals, l, h);
}
while(l<h && intervals[l][0]<=partition){
l++;
}
if(l<h){
swap(intervals, l, h);
}
}
sortHelp(intervals, low, l-1);
sortHelp(intervals, l+1, high);
}
public void swap(int[][] intervals, int i, int j){
int[] temp = intervals[i];
intervals[i] = intervals[j];
intervals[j] = temp;
}
}