题目
数组的每个索引做为一个阶梯,第 i个阶梯对应着一个非负数的体力花费值 costi。
每当你爬上一个阶梯你都要花费对应的体力花费值,然后你可以选择继续爬一个阶梯或者爬两个阶梯。
您需要找到达到楼层顶部的最低花费。在开始时,你可以选择从索引为 0 或 1 的元素作为初始阶梯。
示例 1:
输入: cost = [10, 15, 20]
输出: 15
解释: 最低花费是从cost[1]开始,然后走两步即可到阶梯顶,一共花费15。
示例 2:
输入: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
输出: 6
解释: 最低花费方式是从cost[0]开始,逐个经过那些1,跳过cost[3],一共花费6。
注意:
cost 的长度将会在 [2, 1000]。
每一个 cost[i] 将会是一个Integer类型,范围为 [0, 999]。
思路
1.构建一个数组count_cost,用于记录当前位置最小的代价,初始化为cost
2.i从位置2开始不断往后遍历到当前位置的最小cost
例如,求第i个位置最小的代价count_cost[i],那么只能是两种情况:
- 从第i-1的位置跳一步:count_cost[i] = cost[i] + count_cost[i-1]
从第i-2的位置跳两步:count_cost[i] = cost[i] + count_cost[i-2]
每次只用比较,前两个代价的大小即可。
代码如下:
class Solution:
def minCostClimbingStairs(self, cost):
"""
:type cost: List[int]
:rtype: int
"""
count_cost = cost[:]
i = 2
lens = len(cost)
while i<lens:
count_cost[i] = min(count_cost[i-1],count_cost[i-2]) + cost[i]
i = i+1
return min(count_cost[lens-1],count_cost[lens-2])