提示:努力生活,开心、快乐的一天
文章目录
110.平衡二叉树
💡解题思路
- 递归法:
- 明确递归函数的参数和返回值:参数:当前传入节点。 返回值:以当前传入节点为根节点的树的高度,,如果已经不是二叉平衡树了,可以返回-1 来标记
- 明确终止条件:递归的过程中依然是遇到空节点了为终止,返回0,表示当前节点为根节点的树高度为0
- 明确单层递归的逻辑:如何判断以当前传入节点为根节点的二叉树是否是平衡二叉树呢?当然是其左子树高度和其右子树高度的差值。
分别求出其左右子树的高度,然后如果差值小于等于1,则返回当前二叉树的高度,否则返回-1,表示已经不是二叉平衡树了。
🤔遇到的问题
- 最后返回的是true/false,没有处理返回-1的情况
💻代码实现
递归法
var isBalanced = function (root) {
//还是用递归三部曲 + 后序遍历 左右中 当前左子树右子树高度相差大于1就返回-1
// 1. 确定递归函数参数以及返回值
const getdepth = (node) => {
// 2. 确定递归函数终止条件
if (!node) return 0
// 3. 确定单层递归逻辑
//左子树高度
let leftDepth = getdepth(node.left)
// 当判定左子树不为平衡二叉树时,即可直接返回-1
if (leftDepth === -1) return -1
//右子树高度
let rightDepth = getdepth(node.right)
// 当判定右子树不为平衡二叉树时,即可直接返回-1
if (rightDepth === -1) return -1
//左右子树高度差大于1时
if (Math.abs(leftDepth - rightDepth) > 1) {
return -1
} else {
//1+左右子树的最大值
return 1+Math.max(leftDepth,rightDepth)
}
}
//返回-1,不是平衡二叉树
return !(getdepth(root)===-1)
};
🎯题目总结
- 二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数。
- 二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数。
因为求深度可以从上到下去查 所以需要前序遍历(中左右),而高度只能从下到上去查,所以只能后序遍历(左右中)
257. 二叉树的所有路径
💡解题思路
- 从根节点到叶子的路径,所以需要前序遍历,这样才方便让父节点指向孩子节点,找到对应的路径
- 递归法,三要素
- 递归函数参数以及返回值:要传入根节点,记录每一条路径的path
- 确定递归终止条件:当 cur不为空,其左右孩子都为空的时候,就找到叶子节点,就开始结束的处理逻辑了(把路径放进result里)
为什么没有判断cur是否为空呢,因为下面的逻辑可以控制空节点不入循环 - 确定单层递归逻辑:
1、因为是前序遍历,需要先处理中间节点,中间节点就是我们要记录路径上的节点,先放进path中
2、左右结点的递归与回溯,两者必须在一起
🤔遇到的问题
- 确定终止条件,找到叶子结点,没有加入到路径中
💻代码实现
递归法
var binaryTreePaths = function (root) {
//递归遍历+递归三部曲
//最终返回的结果
let res = []
//1. 确定递归函数 函数参数
const getPath = (node, curPath) => {
//2. 确定终止条件,到叶子节点就终止
if (!node.left && !node.right) {
curPath+=node.val
res.push(curPath)
return
}
//3. 确定单层递归逻辑
curPath += node.val + '->';
node.left && getPath(node.left, curPath)
node.right&&getPath(node.right,curPath)
}
getPath(root, '')
return res
};
🎯题目总结
curPath += node.val + '->';
每次的直接赋值 ,做到了回溯的效果
404. 左叶子之和
💡解题思路
- 左叶子的明确定义:节点A的左孩子不为空,且左孩子的左右孩子都为空(说明是叶子节点),那么A节点的左孩子为左叶子节点
- 判断当前节点是不是左叶子是无法判断的,必须要通过节点的父节点来判断其左孩子是不是左叶子
- 递归法:递归的遍历顺序为后序遍历(左右中),是因为要通过递归函数的返回值来累加求取左叶子数值之和
- 确定递归函数的参数和返回值:传入树的根节点,递归函数的返回值为数值之和
- 确定终止条件:如果遍历到空节点,那么左叶子值一定是0;当前遍历的节点是父节点,才能判断其子节点是不是左叶子。 所以如果当前遍历的节点是叶子节点,那其左叶子也必定是0
- 确定单层递归的逻辑:当遇到左叶子节点的时候,记录数值,然后通过递归求取左子树左叶子之和,和 右子树左叶子之和,相加便是整个树的左叶子之和
🤔遇到的问题
- 了解思路后写题,暂无问题
💻代码实现
递归法
//采用后序遍历 递归遍历
// 1. 确定递归函数参数
var sumOfLeftLeaves = function(root) {
let sum = 0
// 2. 确定终止条件
if(!root) return 0
// 3. 单层递归逻辑
//左右
let leftValue = sumOfLeftLeaves(root.left)
let rightValue = sumOfLeftLeaves(root.right)
//中
let midValue = 0
if(root.left&&root.left.left===null&&root.left.right===null){
midValue = root.left.val
}
sum = midValue+leftValue+rightValue
return sum
};
迭代法
var sumOfLeftLeaves = function(root) {
let sum = 0
if(!root) return 0
let queue =[]
queue.push(root)
while(queue.length){
let len = queue.length
for(let i=0;i<len;i++){
let node = queue.shift()
if(node.left&&node.left.left===null&&node.left.right===null){
sum+=node.left.val
}
node.left&&queue.push(node.left)
node.right&&queue.push(node.right)
}
}
return sum
};
🎯题目总结
这道题目要求左叶子之和,是比较绕的,因为不能判断本节点是不是左叶子节点。
此时就要通过节点的父节点来判断其左孩子是不是左叶子了。
平时解二叉树的题目时,已经习惯了通过节点的左右孩子判断本节点的属性,而本题要通过节点的父节点判断本节点的属性
🎈今日心得
对二叉树有了更全面的学习比之前淡出的遍历,感觉更加充盈了