P1065 [NOIP2006 提高组] 作业调度方案

题目描述

我们现在要利用m台机器加工n个工件,每个工件都有m道工序,每道工序都在不同的指定的机器上完成。每个工件的每道工序都有指定的加工时间。

每个工件的每个工序称为一个操作,我们用记号j-k表示一个操作,其中jj为1到n中的某个数字,为工件号;k为1到m中的某个数字,为工序号,例如2-4表示第2个工件第4道工序的这个操作。在本题中,我们还给定对于各操作的一个安排顺序。

例如,当n=3,m=2时,1-1,1-2,2-1,3-1,3-2,2-2 就是一个给定的安排顺序,即先安排第1个工件的第1个工序,再安排第1个工件的第2个工序,然后再安排第2个工件的第1个工序,等等。

一方面,每个操作的安排都要满足以下的两个约束条件。

  1. 对同一个工件,每道工序必须在它前面的工序完成后才能开始;

  2. 同一时刻每一台机器至多只能加工一个工件。

另一方面,在安排后面的操作时,不能改动前面已安排的操作的工作状态。

由于同一工件都是按工序的顺序安排的,因此,只按原顺序给出工件号,仍可得到同样的安排顺序,于是,在输入数据中,我们将这个安排顺序简写为“112332”。

还要注意,“安排顺序”只要求按照给定的顺序安排每个操作。不一定是各机器上的实际操作顺序。在具体实施时,有可能排在后面的某个操作比前面的某个操作先完成。

例如,取n=3,m=2n=3,m=2,已知数据如下(机器号/加工时间):

工件号工序11工序22
11/32/2
21/22/5
32/21/4

则对于安排顺序“112332”,下图中的两个实施方案都是正确的。但所需要的总时间分别是10与12。

当一个操作插入到某台机器的某个空档时(机器上最后的尚未安排操作的部分也可以看作一个空档),可以靠前插入,也可以靠后或居中插入。为了使问题简单一些,我们约定:在保证约束条件(1)(2)的条件下,尽量靠前插入。并且,我们还约定,如果有多个空档可以插入,就在保证约束条件(1)(2)的条件下,插入到最前面的一个空档。于是,在这些约定下,上例中的方案一是正确的,而方案二是不正确的。

显然,在这些约定下,对于给定的安排顺序,符合该安排顺序的实施方案是唯一的,请你计算出该方案完成全部任务所需的总时间。

输入格式

第1行为两个正整数 m, n,用一个空格隔开, (其中m(<20)表示机器数,n(<20)表示工件数)

第2行:m×n 个用空格隔开的数,为给定的安排顺序。

接下来的2n行,每行都是用空格隔开的m个正整数,每个数不超过20。  

其中前n行依次表示每个工件的每个工序所使用的机器号,第1个数为第1个工序的机器号,第2个数为第2个工序机器号,等等。

后n行依次表示每个工件的每个工序的加工时间。

可以保证,以上各数据都是正确的,不必检验。

输出格式

1个正整数,为最少的加工时间。

输入输出样例

输入 #1复制

2 3
1 1 2 3 3 2
1 2 
1 2 
2 1
3 2 
2 5 
2 4

输出 #1复制

10

说明/提示

NOIP 2006 提高组 第三题

 

#include<bits/stdc++.h>
using namespace std;
int m , n , maxn;
int arr[405];
struct node{
	int id;//当前工件的当前工序在哪个机器上操作
	int cost;//当前工件的当前工序需要花费时间 
}a[21][21];
int mactime[21][1000000];
int step[21];
int lasttime[21];
int main(){
	scanf("%d %d" , &m , &n);
	for(int i = 1 ; i <= n * m ; i++) cin >> arr[i];
	for(int i = 1 ; i <= n ; i++){
		for(int j = 1 ; j <= m ; j++) scanf("%d" , &a[i][j].id);
	}
	for(int i = 1 ; i <= n ; i++){
		for(int j = 1 ; j <= m ; j++) scanf("%d" , &a[i][j].cost);
	}
	for(int i = 1 ; i <= n * m ; i++){
		int temp = arr[i];//需要进行操作的工件 
		step[temp]++;//第temp个工件的执行工序加一
		int ids = a[temp][step[temp]].id;
		int costs = a[temp][step[temp]].cost;
		int ans = 0 , k;
		for(k = lasttime[temp] + 1 ; ; k++){
			if(!mactime[ids][k]) ans++;
			else ans = 0;
			if(ans == costs){
				for(int j = k - ans + 1 ; j <= k ; j++) mactime[ids][j] = 1;
				break;
			}
		} 
		lasttime[temp] = k;
		maxn = max(k , maxn); 
	}
	cout << maxn;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值