线性回归、逻辑回归和softmax方法

线性回归(Linear Regression,LR)

对于m个样本 X = [ x 1 , x 2 ⋯ x n ] T X=[x_{1},x_{2}\cdots x_{n}]^{T} X=[x1,x2xn]T,用参数 Θ = [ θ 1 , θ 2 ⋯ θ n ] T \Theta =[\theta _{1},\theta _{2}\cdots \theta _{n}]^{T} Θ=[θ1,θ2θn]T进行估计,记为
h θ ( x ) = Θ T X = θ 0 x 0 + θ 1 x 1 + ⋯ θ n x n ( 为 表 示 方 便 令 x 0 = 1 。 ) h_{\theta }(x)=\Theta ^{T}X=\theta _{0}x_{0}+\theta _{1}x_{1}+\cdots \theta _{n}x_{n}(为表示方便令x_{0}=1。) hθ(x)=ΘTX=θ0x0+θ1x1+θnxn便x0=1定义损失函数
J ( θ ) = 1 2 ∑ i = 1 m ( h θ ( x i ) − y i ) 2 J(\theta )=\frac{1}{2}\sum_{i=1}^{m}(h_{\theta }(x^{i})-y^{i})^{2} J(θ)=21i=1m(hθ(xi)yi)2
目标为最小化损失函数 J ( θ ) J(\theta ) J(θ),可使用梯度下降法或者最小二乘法。

  • 梯度下降法
    J ( θ ) J(\theta) J(θ)相对于 θ \theta θ的梯度 ∂ J ( θ ) ∂ θ j = ( h θ ( x i ) − y i ) x j i \frac{\partial J(\theta )}{\partial \theta _{j}}=(h_{\theta }(x^{i})-y^{i})x^{i}_{j} θjJ(θ)=(hθ(xi)yi)xji,这里上标i表示第i个样本,下标j表示样本的第j个特征。在梯度的负方向上更新 θ \theta θ,即
    θ j : = θ j − α ∂ J ( θ ) ∂ θ j = θ j + α ( y i − h θ ( x i ) ) x j i \theta _{j}:=\theta _{j}-\alpha \frac{\partial J(\theta )}{\partial \theta _{j}}=\theta _{j}+\alpha(y^{i}-h_{\theta }(x^{i}))x^{i}_{j} θj:=θjαθjJ(θ)=θj+α(yihθ(xi))xji
  • 最小二乘法
    将样本整体表示为矩阵X,结果表示为向量 y → \overrightarrow{y} y ,则参数 θ \theta θ可由下式求得
    θ = ( X T X ) − 1 X T y → \theta =(X^{T}X)^{-1}X^{T}\overrightarrow{y} θ=(XTX)1XT
  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值