Codeforces 460C Present

  • 题意:有n多初始高度不同的花,每次浇水可以浇相邻的w朵花,每一次浇水花都会长高一个单位,可以浇m次,问怎样浇水才能使最低的那朵花最高。最高是多少。
  • 思路:很显然的最大化最小值问题。仔细观察可以发现并没有一个可以直接算出答案的思路,但是考虑到如果如果最低能够达到H的高度,那么比H低的高度也肯定都可以满足,如果不能够达到H的高度,比H高的高度也就不能达到,所以如果给定一个高度H,可以很方便的判断是否所有的花都能够达到H的高度,变可以试用二分快速的解决问题。——–判断:现在问题转化为给定一个高度H,如何判断是否所有的花都能达到这个高度。很容易想到的是,从左到右依次贪心,如果当前的花加上前面已经浇水生长的高度还不能达到高度H,就继续浇水补奇到高度H,最后判断要是所有花的高度达到H的浇水次数是否超过m次。这里涉及到一个点被区间覆盖了多少次的记录问题,比如要在[a,b]区间浇水c次,可以建立一个数组cnt,然后cnt[a] += c, cnt[b+1] -= c。要计算p位置被区间覆盖了多少次,只需要计算[0,p]的前缀和就好了。 回到这道题,所以这里的判断可以在O(n)的时间内解决。加上二分求最值,整道题的复杂度是O(nlogn)。
  • 代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 200000 + 5;
const int INF = (1<<30) - 1;
int h[maxn], d[maxn];
int n, m, w;

bool judge(int x)
{
    memset(d, 0, sizeof(d));
    int sum = 0;
    int cnt = 0;
    for(int i = 0; i < n; i++) {
        sum += d[i];
        int t = x - h[i] - sum;
        if(t > 0) {
            cnt += t;
            sum += t;
            d[i] += t;
            d[i+w] -= t;
            if(cnt > m) return false;
        }
    }
    return true;
}

int main()
{
    scanf("%d%d%d", &n, &m, &w);
    for(int i = 0; i < n; i++) {
        scanf("%d", &h[i]);
    }

    int l = 0, r = INF;
    while(l < r - 1) {
        int m = (l + r) >> 1;
        if(!judge(m)){
            r = m;
        } else {
            l = m;
        }
    }
    cout << l << endl;
    return 0;
}
  • 血泪史:因为数组访问越界wa了很多次,并且一直没有找到原因,在使用数组的时候,一定要注意是否访问越界,尤其是涉及到数组下标的计算操作!!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值