斜率优化dp小结

本文介绍了动态规划中的斜率优化,包括单调队列优化的基本概念和应用。通过分析斜率不等式,展示了如何利用单调队列维护上凸集以求得最优转移点。此外,还探讨了分治策略在处理单调性问题时的应用,虽然复杂度稍高,但编码更简洁且适用范围更广。最后,作者提到了在codeforces 674E问题中学习到的这种方法,并感谢Claris的启发。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

单调队列优化

在写斜率优化之前,我们来回顾一下单调队列优化的dp
1. 对于如下形式的dp方程

dp[i]=min{ dp[j]+f(j)}(0<j<i)

我们直接用一个变量维护(0, i)中dp[j] + f(j)的最小值即可

2.对于如下形式的dp方程

dp[i]=min{ dp[j]+f(j)}(im<j<i)

我们可以用一个单调队列维护一个(i - m, j)中dp[j] + f(j)的最小值,然后做到O(1)转移。

斜率优化

基本形式

但是对于形如

dp[i]=min{ dp[j]+f(i,j)}

的方程,无法做到O(1)计算
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值