题目背景
若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系。
题目描述
规定:xx 和 yy 是亲戚,yy 和 zz 是亲戚,那么 xx 和 zz 也是亲戚。如果 xx,yy 是亲戚,那么 xx 的亲戚都是 yy 的亲戚,yy 的亲戚也都是 xx 的亲戚。
输入格式
第一行:三个整数 n,m,pn,m,p,(n,m,p \le 5000n,m,p≤5000),分别表示有 nn 个人,mm 个亲戚关系,询问 pp 对亲戚关系。
以下 mm 行:每行两个数 M_iMi,M_jMj,1 \le M_i,~M_j\le N1≤Mi, Mj≤N,表示 M_iMi 和 M_jMj 具有亲戚关系。
接下来 pp 行:每行两个数 P_i,P_jPi,Pj,询问 P_iPi 和 P_jPj 是否具有亲戚关系。
输出格式
pp 行,每行一个
Yes
或No
。表示第 ii 个询问的答案为“具有”或“不具有”亲戚关系。输入输出样例
输入 #1复制
6 5 3 1 2 1 5 3 4 5 2 1 3 1 4 2 3 5 6输出 #1复制
Yes Yes No
1.该题就是一个普普通通的并查集。
可以看一下这个去了解并查集:
2.使用并查集模板就好了 。
(1)初始化
(2)找祖宗
(3)合并祖宗,随便判断一下是否一个集合中,输出即可。
代码如下:
#include<stdio.h>
#define N 5010
int a[N];
int getf(int x)
{
if(x==a[x]) return x;
int p;
p=getf(a[x]);
a[x]=p;
return p;
}
int merge(int x,int y)
{
int p,q;
p=getf(x);
q=getf(y);
if(p!=q)
{
a[q]=p;
}
}
int pd(int x,int y)
{
int p,q;
p=getf(x);
q=getf(y);
if(p!=q) printf("No\n");
else printf("Yes\n");
return 0;
}
int main()
{
int n,m,p,i,j,x,y;
scanf("%d%d%d",&n,&m,&p);
for(i=1;i<=n;i++)
a[i]=i;
for(i=0;i<m;i++)
{
scanf("%d%d",&x,&y);
merge(x,y);
}
for(i=0;i<p;i++)
{
scanf("%d%d",&x,&y);
pd(x,y);
}
return 0;
}