【IBN-Net】

概述

本文提出了IBN-Net,这是一种新颖的卷积架构,它显着提高了CNN在一个领域(例如Cityscapes)上的建模能力以及其在另一个领域(例如GTA5)上的泛化能力,而无需微调。

IBN-Net将Instance Normalization(IN)和Batch Normalization(BN)作为构建块进行了精心整合,并可以包装到许多先进的深度网络中以提高其性能。

贡献点

本文有三个关键贡献。
第一,通过深入研究IN和BN,我们揭示了IN学习与外观变化(例如颜色、样式和虚拟/现实)不变的特征,而BN对于保留与内容相关的信息至关重要。
第二,IBN-Net可以应用于许多先进的深度体系结构,例如DenseNet、ResNet、ResNeXt和SENet,并在不增加计算成本的情况下持续提高它们的性能。
第三,在将训练好的网络应用于新领域时,例如从GTA5到Cityscapes,IBN-Net实现了与域适应方法相当的改进,即使没有使用来自目标域的数据。

优点和应用场景

文章首先介绍了现有CNN架构存在的问题:它们主要设计用于解决单个领域中的问题,并且不能推广到其他领域。

然后介绍了IBN-Net如何通过整合Instance Normalization(IN)和Batch Normalization(BN)来解决这个问题,并详细阐述了IN和BN各自学习到的特征及其组合对CNN性能和泛化能力的影响。

最后,文章介绍了IBN-Net在多个先进深度体系结构上应用时所取得的显著性能提升,并展示了其在WAD 2018 Challenge Drivable Area track上获得第一名。

基础知识点

Instance Normalization(IN)和Batch Normalization(BN)是两种常用的归一化方法,它们都可以用于卷积神经网络(CNN)中。这两种方法都是为了解决深度学习中的梯度消失问题而提出的。

Batch Normalization(BN)是一种在训练期间对每个小批量数据进行归一化的方法。它通过对每个小批量数据进行归一化来减少内部协变量偏移,从而加速了训练过程。在CNN中,BN通常应用于卷积层和全连接层。

Instance Normalization(IN)是一种在每个样本上进行归一化的方法。它通过对每个样本进行归一化来减少内部协变量偏移,从而提高了模型的泛化能力。在CNN中,IN通常应用于图像风格转换、图像生成和语义分割等任务。

例如,对于图像风格转换任务,IN可以将输入图像的每个通道的均值和方差归一化到0和1之间,从而使模型更好地学习到图像的风格特征。对于语义分割任务,IN可以将每个样本的特征图归一化到0和1之间,从而提高模型的泛化能力。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值