1、冒泡排序
原理:
-
比较相邻的元素。如果第一个比第二个大,就交换他们两个。
-
对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
-
针对所有的元素重复以上的步骤,除了最后一个。
-
持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
代码:
/*
* 冒泡排序
*/
public class BubbleSort {
public static void main(String[] args) {
int[] arr={6,3,8,2,9,1};
System.out.println("排序前数组为:");
for(int num:arr){
System.out.print(num+" ");
}
for(int i=0;i<arr.length-1;i++){//外层循环控制排序趟数
for(int j=0;j<arr.length-1-i;j++){//内层循环控制每一趟排序多少次
if(arr[j]>arr[j+1]){
int temp=arr[j];
arr[j]=arr[j+1];
arr[j+1]=temp;
}
}
}
System.out.println();
System.out.println("排序后的数组为:");
for(int num:arr){
System.out.print(num+" ");
}
}
}
2、选择排序
原理:
第1趟,在待排序记录r[1]~r[n]中选出最小的记录,将它与r[1]交换;
第2趟,在待排序记录r[2]~r[n]中选出最小的记录,将它与r[2]交换;以此类推,第i趟在待排序记录r[i]~r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。
代码:
//选择排序
public class SelectionSort {
public static void main(String[] args) {
int[] arr={1,3,2,45,65,33,12};
System.out.println("交换之前:");
for(int num:arr){
System.out.print(num+" ");
}
//选择排序的优化
for(int i = 0; i < arr.length - 1; i++) {// 做第i趟排序
int k = i;
for(int j = k + 1; j < arr.length; j++){// 选最小的记录
if(arr[j] < arr[k]){
k = j; //记下目前找到的最小值所在的位置
}
}
//在内层循环结束,也就是找到本轮循环的最小的数以后,再进行交换
if(i != k){ //交换a[i]和a[k]
int temp = arr[i];
arr[i] = arr[k];
arr[k] = temp;
}
}
System.out.println();
System.out.println("交换后:");
for(int num:arr){
System.out.print(num+" ");
}
}
}
3、直接插入排序
1 基本原理
1 核心思想:插入排序通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入 ,如此重复,直至完成序列排序。
2 算法分析:
1. 从序列第一个元素开始,该元素可以认为已经被排序
2. 取出下一个元素,设为待插入元素,在已经排序的元素序列中从后向前扫描,如果该元素(已排序)大于待插入元素,将该元素移到下一位置。
3. 重复步骤2,直到找到已排序的元素小于或者等于待排序元素的位置,插入元素
4. 重复2,3步骤,完成排序。
2 实例说明
以一组数据{12,15,9,20,6,31,24} 为例,进行直接插入排序的算法演示:
默认序列第一个元素12 以及被排序。
取下一元素 15 从后往前与已排序序列一次比较,15插入12 之后,已排序序列为[12,15]。
取下一元素9,重复2步骤,将9插12 之前,已排序序列为[9,12,15]。
循环上述操作,直至最后一个元素24,插入合适位置,完成排序。
3 代码实现
// 直接插入排序(C++)
void InsertSort(vector<int> &vi)
{
for(int i=1;i<vi.size();i++)
{
int temp=vi[i];
int j;
for(j=i-1;j>=0&&temp<vi[j];j--)
{
vi[j+1]=vi[j]; //将较大元素后移
}
vi[j+1]=temp; //temp插入正确的位置
}
}
算法改进:二分插入排序
二分查找插入排序的原理:是直接插入排序的一个变种,区别是:在有序区中查找新元素插入位置时,为了减少元素比较次数提高效率,采用二分查找算法进行插入位置的确定。
算法分析:
设数组为a[0…n]。
1. 将原序列分成有序区和无序区。a[0…i-1]为有序区,a[i…n] 为无序区。(i从1开始)
2. 从无序区中取出第一个元素,即a[i],使用二分查找算法在有序区中查找要插入的位置索引j。
3. 将a[j]到a[i-1]的元素后移,并将a[i]赋值给a[j]。
4. 重复步骤2~3,直到无序区元素为0。
// 二分插入排序
void BinInsertSort(vector<int> &vi)
{
for(int i=1;i<vi.size();i++)
{
int left=0;
int right=i-1;
int temp=vi[i]
while(left<=right)
{
int mid=(left+right)/2; //二分区域
if(vi[mid]>temp)
{
right=mid-1; //向左缩小区域
}
else
{
left=mid+1; //向右缩小区域
}
}
for(int j=i-1;j>=left;j--) //vi[left,i-1]的元素整体后移
{
vi[j+1]=vi[j];
}
vi[left]=temp;
}
}
4 性能分析
1 时间复杂度:
(1)顺序排列时,只需比较(n-1)次,插入排序时间复杂度为O(n);
(2)逆序排序时,需比较n(n-1)/2次,插入排序时间复杂度为O(n^2);
(3)当原始序列杂乱无序时,平均时间复杂度为O(n^2)。
2 空间复杂度:
插入排序过程中,需要一个临时变量temp存储待排序元素,因此空间复杂度为O(1)。
3 算法稳定性:
插入排序是一种稳定的排序算法。