1.前言:动态规划与分治算法类似,递归求解子问题,再组合子问题来求解。但动态规划在子问题有重叠的情况下有优势。动态规划算法用于求解最优化问题,所求解的问题需要满足最优子结构性质:问题最优解由相关子问题的最优解组合而成。
2.动态规划的两种实现方式:
2.1 带备忘的自顶向下法
所谓的带备忘,即保存每一个子问题的解,在下次用时直接取出而不需要重新计算,从而提高效率。
2.2 自底向上法
即任何子问题的求解,只依赖于规模更小的子子问题的求解。由于是从小到大的规模顺序求解,即在计算子问题时,它的所有依赖的更小的子问题已经求解且保存,不需重新计算,从而提高效率。
3.钢条切割最优化求解(算法导论上的)
问题描述:给定钢条长度n和一个价格表p,求切割方案,使得销售收益r最大。
长度i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
价格p | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |
建立数学模型:r(n)=max(p(i)+r(n-i)); 其中i=1,2,...n
说明:我们将钢条从左边切割下长度为i的一段,只对右边剩下的n-i长度来继续进行切割。即原问题最优解只包含一个子问题解(右端剩余部分),而不是两个。
java代码如下:
package com.talkweb.test01;
import java.util.Arrays;
/**
* 动态规划运用案例
* 钢条切割
* @author Administrator
*
*/
public class DynamicProgram {
public static void main(String[] args){
int[] p={-1,1,5,8,9,10,17,17,20,24,30};//下标对应钢条长度,值对应收益,下标从1开始
DynamicProgram dp=new DynamicProgram();
//1.初始化r
int[] r=new int[p.length];
for(int i=0;i<r.length;i++){
r[i]=-1;
}
//2.调用方法求解
int n=7;//需要切割的钢条长度
int m=dp.iterationValue(p,n, r);//带备忘自顶向下
System.out.println("带备忘自顶向下 m="+m);
dp.printBottom_up(p,n); //自底向上
}
/**
* 自顶向下递归求解:递归计算当前长度为n的钢条的最优值
* @param p钢条对应收益数组
* @param n当前钢条长度
* @param r记录最优值
*/
public int iterationValue(int[] p,int n,int[] r){
if(r[n]>=0){//若已记录当前长度n的最优值,则直接返回
return r[n];
}
//若当前长度n为0则最优值为0
if(n==0){
return 0;
}
int s=-1;//记录当前n做一次切割各种方案的最优值
for(int i=1;i<=n;i++){//遍历当前长度,即当前长度的各种切割方案
s=max(s,p[i]+iterationValue(p,n-i,r));
}
//保存当前长度n的最优值
r[n]=s;
return s;
}
public int max(int s,int t){
return s>t?s:t;
}
/**
* 自底向上非递归求解
* @param p
* @return
*/
public int[] bottom_up(int[] p,int n){
int[] r=new int[n+1]; //保存最优值
int[] s=new int[n+1]; //保存最优切割方案
for(int j=1;j<=n;j++){
int q=-1; //记录钢条长度为j时的最优值
for(int i=1;i<=j;i++){ //对长度为j的钢条做一次切割
if(q<p[i]+r[j-i]){
q=p[i]+r[j-i]; //保存较大值
s[j]=i; //保存当前长度为j的最佳切割长度i
}
}
r[j]=q; //保存钢条规模长度为j的最佳收益值
}
System.out.println("自底向上 最优收益:"+r[n]);
return s; //返回钢条长度为n时的最佳收益值
}
public void printBottom_up(int[]p,int n){
int[]s=bottom_up(p,n);
System.out.println("切割方案:");
while(n>0){
System.out.print(s[n]+" ");
n=n-s[n];
}
System.out.println();
}
}
4.商品折扣最优购买方案的优惠总额(只是简单的自顶向下实现,没有用到动态规划)
package com.talkweb.arithmetic;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
/**
* 商品折扣最优购买方案
* @author Administrator
*
*/
public class GoodsDiscount {
public static void main(String[] args){
//1.折扣集合
List<ZheKou> zks=new ArrayList<ZheKou>();
zks.add(new ZheKou(0,"0",0,0));
zks.add(new ZheKou(1,"折扣1",30,6));
zks.add(new ZheKou(3,"折扣2",60,15));
zks.add(new ZheKou(2,"折扣3",99,20));
GoodsDiscount gd=new GoodsDiscount();
double money=100;
int[] s=new int[zks.size()];
System.out.println("优惠总额:"+gd.fun(zks,money,0));
}
/**
* 递归计算最多优惠额
* @param zks商品折扣
* @param money余额
* @return最多优惠额
*/
public double fun(List<ZheKou> zks,double money,double youhui){
//1.若余额不足以购买任何折扣,则返回优惠额
boolean flag=false;
for(int i=1;i<zks.size();i++){
if(zks.get(i).getPrice()<money){
flag=true;
}
}
if(!flag){
return youhui;
}
//2.迭代可以购买每一种折扣,计算并记录当前购买最大优惠额
double max=0;
for(int i=1;i<zks.size();i++){
if(money>zks.get(i).getPrice()){
//计算购买1件第i种折扣优惠额
max=maxValue(max,fun(zks,money-zks.get(i).getPrice()+zks.get(i).getYhPrice(),youhui+zks.get(i).getYhPrice()));
}
}
//保存优惠额
youhui=max;
return youhui;
}
public double maxValue(double m,double y){
return m>y?m:y;
}
}