高效的动态规划算法应用案例

1.前言:动态规划与分治算法类似,递归求解子问题,再组合子问题来求解。但动态规划在子问题有重叠的情况下有优势。动态规划算法用于求解最优化问题,所求解的问题需要满足最优子结构性质:问题最优解由相关子问题的最优解组合而成。

2.动态规划的两种实现方式:

    2.1 带备忘的自顶向下法

           所谓的带备忘,即保存每一个子问题的解,在下次用时直接取出而不需要重新计算,从而提高效率。

    2.2 自底向上法

          即任何子问题的求解,只依赖于规模更小的子子问题的求解。由于是从小到大的规模顺序求解,即在计算子问题时,它的所有依赖的更小的子问题已经求解且保存,不需重新计算,从而提高效率。

3.钢条切割最优化求解(算法导论上的)

问题描述:给定钢条长度n和一个价格表p,求切割方案,使得销售收益r最大。


价格表

长度i12345678910
价格p15891017172024

30


建立数学模型:r(n)=max(p(i)+r(n-i));    其中i=1,2,...n

说明:我们将钢条从左边切割下长度为i的一段,只对右边剩下的n-i长度来继续进行切割。即原问题最优解只包含一个子问题解(右端剩余部分),而不是两个。

java代码如下:

package com.talkweb.test01;

import java.util.Arrays;

/**
 * 动态规划运用案例
 * 钢条切割
 * @author Administrator
 *
 */
public class DynamicProgram {

	
	public static void main(String[] args){
		int[] p={-1,1,5,8,9,10,17,17,20,24,30};//下标对应钢条长度,值对应收益,下标从1开始
		DynamicProgram dp=new DynamicProgram();
		
		//1.初始化r
		int[] r=new int[p.length];
		for(int i=0;i<r.length;i++){
			r[i]=-1;
		}
		//2.调用方法求解
		int n=7;//需要切割的钢条长度
		int m=dp.iterationValue(p,n, r);//带备忘自顶向下
		System.out.println("带备忘自顶向下 m="+m);
		dp.printBottom_up(p,n);      //自底向上
	}
	/**
	 * 自顶向下递归求解:递归计算当前长度为n的钢条的最优值
	 * @param p钢条对应收益数组
	 * @param n当前钢条长度
	 * @param r记录最优值
	 */
	public int iterationValue(int[] p,int n,int[] r){
		if(r[n]>=0){//若已记录当前长度n的最优值,则直接返回
			return r[n];
		}
		//若当前长度n为0则最优值为0
		if(n==0){
			return 0;
		}
		int s=-1;//记录当前n做一次切割各种方案的最优值
		for(int i=1;i<=n;i++){//遍历当前长度,即当前长度的各种切割方案
			s=max(s,p[i]+iterationValue(p,n-i,r));
		}
		//保存当前长度n的最优值
		r[n]=s;
		return s;
	}
	public int max(int s,int t){
		return s>t?s:t;
	}
	/**
	 * 自底向上非递归求解
	 * @param p
	 * @return
	 */
	public int[] bottom_up(int[] p,int n){
		int[] r=new int[n+1];  //保存最优值
		int[] s=new int[n+1];  //保存最优切割方案
		for(int j=1;j<=n;j++){
			int q=-1;                //记录钢条长度为j时的最优值
			for(int i=1;i<=j;i++){   //对长度为j的钢条做一次切割
				if(q<p[i]+r[j-i]){
					q=p[i]+r[j-i];  //保存较大值
					s[j]=i;         //保存当前长度为j的最佳切割长度i
				}
			}
			r[j]=q;     //保存钢条规模长度为j的最佳收益值
			
		}
		System.out.println("自底向上  最优收益:"+r[n]);
		return s; //返回钢条长度为n时的最佳收益值
	}
	
	public void printBottom_up(int[]p,int n){
		int[]s=bottom_up(p,n);
		System.out.println("切割方案:");
		while(n>0){
			System.out.print(s[n]+" ");
			n=n-s[n];
		}
		System.out.println();
	}
}

4.商品折扣最优购买方案的优惠总额(只是简单的自顶向下实现,没有用到动态规划)

package com.talkweb.arithmetic;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

/**
 * 商品折扣最优购买方案
 * @author Administrator
 *
 */
public class GoodsDiscount {

	public static void main(String[] args){
		//1.折扣集合
		List<ZheKou> zks=new ArrayList<ZheKou>();
		zks.add(new ZheKou(0,"0",0,0));
		zks.add(new ZheKou(1,"折扣1",30,6));
		zks.add(new ZheKou(3,"折扣2",60,15));
		zks.add(new ZheKou(2,"折扣3",99,20));
		
		GoodsDiscount gd=new GoodsDiscount();
		double money=100;
		int[] s=new int[zks.size()];
		System.out.println("优惠总额:"+gd.fun(zks,money,0));
	}
	
	/**
	 * 递归计算最多优惠额
	 * @param zks商品折扣
	 * @param money余额
	 * @return最多优惠额
	 */
	public double fun(List<ZheKou> zks,double money,double youhui){
		//1.若余额不足以购买任何折扣,则返回优惠额
		boolean flag=false;
		for(int i=1;i<zks.size();i++){
			if(zks.get(i).getPrice()<money){
				flag=true;
			}
		}
		if(!flag){
			return youhui;
		}
		
		//2.迭代可以购买每一种折扣,计算并记录当前购买最大优惠额
		double max=0;
		for(int i=1;i<zks.size();i++){
			if(money>zks.get(i).getPrice()){
				//计算购买1件第i种折扣优惠额
				max=maxValue(max,fun(zks,money-zks.get(i).getPrice()+zks.get(i).getYhPrice(),youhui+zks.get(i).getYhPrice()));
			}
		}
		//保存优惠额
		youhui=max;
		return youhui;
	}
	
	public double maxValue(double m,double y){
		return m>y?m:y;
	}
}










评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值