343. 整数拆分JAVA
题目描述
给定一个正整数 n
,将其拆分为 k
个 正整数 的和( k >= 2
),并使这些整数的乘积最大化。
返回 你可以获得的最大乘积 。
示例 1:
输入: n = 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。
示例 2:
输入: n = 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。
代码求解
class Solution {
public int integerBreak(int n) {
int a[] = new int[n+1];
Arrays.fill(a, 0);
a[2] = 1;
for (int i = 3;i <= n ;i ++){
for (int j = 1; j <= i/2; j ++){
a[i] = Math.max(Math.max(a[i-j] * j, (i-j)*j), a[i]);
}
}
return a[n];
}
}
- 为什么是
Math.max(a[i-j] * j, (i-j)*j)
因为题目要求的是,拆分成两个及以上。(i-j)*j
代表的是两个,a[i-j] * j
代表的是以上,而不采用a[i-j]*a[j]
的原因为,这样就默认为是4个相乘了,因为每个a[i]
都表示两个相乘。 - 为什么是
Math.max(Math.max(a[i-j] * j, (i-j)*j), a[i])
又多了一个a[i]
因为我们在第二轮循环j
的循环下面要找出a[i]
的最大值,这也解释了为什么a[]
要初始化为0
- 为什么可以优化为
j <= i/2
因为最大值一般都是尽可能的相似,所以可以取到一半。