迪克斯特拉算法

package Test;


import java.util.Arrays;

/**
 * 尚硅谷
 */
public class DijkstraAlgorithm {
    public static void main(String[] args) {
        char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        int[][] matrix = new int[vertex.length][vertex.length];
        final int N = 65535;// 表示不可以连接
        matrix[0] = new int[]{N, 5, 7, N, N, N, 2};
        matrix[1] = new int[]{5, N, N, 9, N, N, 3};
        matrix[2] = new int[]{7, N, N, N, 8, N, N};
        matrix[3] = new int[]{N, 9, N, N, N, 4, N};
        matrix[4] = new int[]{N, N, 8, N, N, 5, 4};
        matrix[5] = new int[]{N, N, N, 4, 5, N, 6};
        matrix[6] = new int[]{2, 3, N, N, 4, 6, N};
        Graph graph = new Graph(vertex, matrix);
        graph.showGraph();
        graph.dsj(6);
        graph.showDijkstra();

    }
}

class Graph {
    private char[] vertex;
    private int[][] matrix;
    private VisitedVertex vv;

    public Graph(char[] vertex, int[][] matrix) {
        this.vertex = vertex;
        this.matrix = matrix;
    }

    //显示结果
    public void showDijkstra() {
        vv.show();
    }

    //显示图
    public void showGraph() {
        for (int[] link : matrix) {
            System.out.println(Arrays.toString(link));
        }
    }

    public void dsj(int index) {
        //初始化
        vv = new VisitedVertex(vertex.length, index);
        update(index);
        //G已被访问所以i从1开始
        for (int i = 1; i < vertex.length; i++) {
            //找下一个顶点的下标
            index = vv.updateArr();
            update(index);
        }

    }

    //更新距离与前驱节点
    public void update(int index) {
        int len = 0;
        //ex:matrix[6]为[2, 3, 65535, 65535, 4, 6, 65535]
        for (int i = 0; i < matrix[index].length; i++) {
            len = vv.getDis(index) + matrix[index][i];
            //in(i)判断i是否被访问getDis(i) 下标为i的距离
            if (!vv.in(i) && len < vv.getDis(i)) {
                //ex:前驱节点(G->A)A的前驱为G pre_visited[pre] = index
                vv.updatePre(i, index);
                vv.updateDis(i, len);
            }
        }
    }


}

class VisitedVertex {
    public int[] already_arr;
    public int[] pre_visited;
    public int[] dis;

    public VisitedVertex(int length, int index) {
        //已经访问的
        this.already_arr = new int[length];
        //前驱
        this.pre_visited = new int[length];
        //距离
        this.dis = new int[length];
        //距离填充65535
        Arrays.fill(dis, 65535);
        //index标记为以访问(G)
        this.already_arr[index] = 1;
        //G赋值为零
        this.dis[index] = 0;
    }

    //是否被访问
    public boolean in(int index) {
        return already_arr[index] == 1;
    }

    //更新出发顶点到index的距离
    public void updateDis(int index, int len) {
        dis[index] = len;
    }

    //更新pre这个顶点
    public void updatePre(int pre, int index) {
        pre_visited[pre] = index;
    }

    //返回出发顶点到index的距离
    public int getDis(int index) {
        return dis[index];
    }

    //继续选择并访问新的顶点,比如这里的G完后,就是A为新的访问顶点(不是出发点)
    public int updateArr() {
        int min = 65535, index = 0;
        for (int i = 0; i < already_arr.length; i++) {
            if (already_arr[i] == 0 && dis[i] < min) {
                min = dis[i];
                index = i;
            }
        }
        already_arr[index] = 1;
        return index;
    }

    //显示最后结果
    public void show() {
        System.out.println("==========================");
        for (int i : already_arr) {
            System.out.print(i + " ");
        }
        System.out.println();
        for (int i : pre_visited) {
            System.out.print(i + " ");
        }
        System.out.println();
        for (int i : dis) {
            System.out.print(i + " ");
        }
        System.out.println();
        char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        int count = 0;
        for (int i : dis) {
            if (i != 65535) {
                System.out.print(vertex[count] + "(" + i + ") ");
            } else {
                System.out.println("N ");
            }
            count++;
        }
        System.out.println();
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值