降维PCA

PCA(主成分分析)是一种常用的数据降维方法,通过最大化方差和对协方差矩阵进行对角化来保留数据的主要特征。此篇博客深入探讨了PCA的最大可分性原理,解释了为何选择使样本投影后方差最大且协方差为零的基作为降维方向。同时,讨论了PCA在降噪、缓解维度灾难和过拟合等方面的作用,以及与SVD的比较。文章还强调了零均值化的重要性,并指出在验证集和测试集处理中的一致性需求。
摘要由CSDN通过智能技术生成

本文从互联网搬运,只用于本人学习记录。

PCA(Principal Component Analysis) 是一种常见的数据分析方式,常用于高维数据的降维,可用于提取数据的主要特征分量

PCA 的数学推导可以从最大可分型和最近重构性两方面进行,前者的优化条件为划分后方差最大,后者的优化条件为点到划分平面距离最小,这里我将从最大可分性的角度进行证明。

1. 最大可分性

选择不同的基可以对同样一组数据给出不同的表示,如果基的数量少于向量本身的维数,则可以达到降维的效果。

那么降维问题就变为:如何选择基才能最大程度保留原有的信息?

一种直观的看法是:希望投影后的投影值尽可能分散,因为如果投影重叠就会有样本消失。当然这个也可以从熵的角度进行理解,熵越大所含信息越多。

1.1. 方差

在这里插入图片描述

1.2. 协方差

在这里插入图片描述
至此,我们得到了降维问题的优化目标:将一组 N 维向量降为 K 维,其目标是选择 K 个单位正交基,使得原始数据变换到这组基上后,各变量两两间协方差为 0,而变量方差则尽可能大(在正交的约束下,取最大的 K 个方差)。

1.3. 协方差矩阵

在这里插入图片描述

1.4. 矩阵对角化

在这里插入图片描述
在这里插入图片描述

1.5. 补充

  1. 拉格朗日乘数法
    在这里插入图片描述
  2. 最近重构性
    以上的证明思路主要是基于最大可分性的思想,通过一条直线使得样本点投影到该直线上的方差最大。除此之外,我们还可以将其转换为线型回归问题,其目标是求解一个线性函数使得对应直线能够更好地拟合样本点集合。这就使得我们的优化目标从方差最大转化为平方误差最小因为映射距离越短,丢失的信息也会越小。区别于最大可分性,这是从最近重构性的角度进行论证。

2. 求解步骤

在这里插入图片描述

3. 性质

  1. 缓解维度灾难:PCA 算法通过舍去一部分信息之后能使得样本的采样密度增大(因为维数降低了),这是缓解维度灾难的重要手段;
  2. 降噪:当数据受到噪声影响时,最小特征值对应的特征向量往往与噪声有关,将它们舍弃能在一定程度上起到降噪的效果;
  3. 过拟合:PCA 保留了主要信息,但这个主要信息只是针对训练集的,而且这个主要信息未必是重要信息。有可能舍弃了一些看似无用的信息,但是这些看似无用的信息恰好是重要信息,只是在训练集上没有很大的表现,所以 PCA 也可能加剧了过拟合;
  4. 特征独立:PCA 不仅将数据压缩到低维,它也使得降维之后的数据各特征相互独立;

4. 细节

4.1. 零均值化

当对训练集进行 PCA 降维时,也需要对验证集、测试集执行同样的降维。而对验证集、测试集执行零均值化操作时,均值必须从训练集计算而来,不能使用验证集或者测试集的中心向量

其原因也很简单,因为我们的训练集时可观测到的数据,测试集不可观测所以不会知道其均值,而验证集再大部分情况下是在处理完数据后再从训练集中分离出来,一般不会单独处理。如果真的是单独处理了,不能独自求均值的原因是和测试集一样。

另外我们也需要保证一致性,我们拿训练集训练出来的模型用来预测测试集的前提假设就是两者是独立同分布的,如果不能保证一致性的话,会出现 Variance Shift 的问题。

4.2. 与SVD对比

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值