逻辑回归Logicstic

本文从互联网搬运,只用于本人学习记录。

1. 模型介绍

Logistic Regression 虽然被称为回归,但其实际上是分类模型,并常用于二分类。Logistic Regression 因其简单、可并行化、可解释强深受工业界喜爱。

Logistic 回归的本质是:假设数据服从这个分布,然后使用极大似然估计做参数的估计。

1.1. Logistic分布

在这里插入图片描述

1.2. Logistic回归

Logistic 回归主要用于分类问题,我们以二分类为例,
在这里插入图片描述
在这里插入图片描述
将 y 视为 x 为正例的概率,则 1-y 为 x 为其反例的概率。两者的比值称为几率(odds),指该事件发生与不发生的概率比值,若事件发生的概率为 p。则对数几率:
在这里插入图片描述
在这里插入图片描述
通过上述推导我们可以看到 Logistic 回归实际上是使用线性回归模型的预测值逼近分类任务真实标记的对数几率,其优点有:

  1. 直接对分类的概率建模,无需实现假设数据分布,从而避免了假设分布不准确带来的问题(区别于生成式模型);
  2. 不仅可预测出类别,还能得到该预测的概率,这对一些利用概率辅助决策的任务很有用;
  3. 对数几率函数是任意阶可导的凸函数,有许多数值优化算法都可以求出最优解。

1.3. 代价函数

逻辑回归模型的数学形式确定后,剩下就是如何去求解模型中的参数。在统计学中,常常使用极大似然估计法来求解,即找到一组参数,使得在这组参数下,我们的数据的似然度(概率)最大。

在这里插入图片描述
即在逻辑回归模型中,我们最大化似然函数最小化损失函数实际上是等价的。

1.4. 求解

优化的主要目标是找到一个方向,参数朝这个方向移动之后使得损失函数的值能够减小,这个方向往往由一阶偏导或者二阶偏导各种组合求得。逻辑回归的损失函数是:
在这里插入图片描述

  1. 随机梯度下降法
    在这里插入图片描述
  2. 牛顿法
    在这里插入图片描述

1.5. 正则化

正则化是一个通用的算法和思想,所以会产生过拟合现象的算法都可以使用正则化来避免过拟合

在这里插入图片描述

  1. L1正则化
    在这里插入图片描述
    实际上L1正则项是模型参数的绝对值之和
  2. L2正则化
    在这里插入图片描述
    实际上L2正则项是模型参数的平方和(参数矩阵的内积)
  3. L1 和 L2 的区别
    从上面的分析中我们可以看到,L1 正则化增加了所有权重 w 参数的绝对值之和逼迫更多 w 为零,也就是变稀疏( L2 因为其导数也趋 0, 奔向零的速度不如 L1 给力了)。我们对稀疏规则趋之若鹜的一个关键原因在于它能实现特征的自动选择。一般来说,大部分特征 x i x_i xi 都是和最终的输出 y i y_i yi 没有关系或者不提供任何信息的。在最小化目标函数的时候考虑 x i x_i xi 这些额外的特征,虽然可以获得更小的训练误差,但在预测新的样本时,这些没用的特征权重反而会被考虑,从而干扰了对正确 y i y_i yi 的预测。L1 正则化的引入就是为了完成特征自动选择的光荣使命,它会学习地去掉这些无用的特征,也就是把这些特征对应的权重置为 0。
    L2 正则化中增加所有权重 w 参数的平方之和,逼迫所有 w 尽可能趋向零但不为零(L2 的导数趋于零)。因为在未加入 L2 正则化发生过拟合时,拟合函数需要顾忌每一个点,最终形成的拟合函数波动很大,在某些很小的区间里,函数值的变化很剧烈,也就是某些 w 值非常大。为此,L2 正则化的加入就惩罚了权重变大的趋势。

加入正则化项,在最小化经验误差的情况下,可以让我们选择解更简单(趋向于 0)的解。

结构风险最小化:在经验风险最小化的基础上(也就是训练误差最小化),尽可能采用简单的模型,以此提高泛化预测精度。

因此,加正则化项就是结构风险最小化的一种实现。
正则化之所以能够降低过拟合的原因在于,正则化是结构风险最小化的一种策略实现。

在这里插入图片描述

1.6. 并行化

逻辑回归的并行化最主要的就是对目标函数梯度计算的并行化。

并行 LR 实际上就是在求解损失函数最优解的过程中,针对寻找损失函数下降方向中的梯度方向计算作了并行化处理,而在利用梯度确定下降方向的过程中也可以采用并行化。

2. 与其他模型对比

2.1. 与线性回归对比

逻辑回归是在线性回归的基础上加了一个 Sigmoid 函数(非线形)映射,使得逻辑回归称为了一个优秀的分类算法。

逻辑回归解决的是分类问题,输出的是离散值;
线性回归解决的是回归问题,输出的连续值。

Sigmoid 函数作用:

  1. 线性回归是在实数域范围内进行预测,而分类范围则需要在 [0,1],逻辑回归减少了预测范围
  2. 线性回归在实数域上敏感度一致,而逻辑回归在 0 附近敏感,在远离 0 点位置不敏感,这个的好处就是模型更加关注分类边界,可以增加模型的鲁棒性。

2.2. 与最大熵模型对比

逻辑回归和最大熵模型本质上没有区别,最大熵在解决二分类问题时就是逻辑回归,在解决多分类问题时就是多项逻辑回归。

逻辑回归是最大熵模型的一个特殊例子

2.3. 与SVM对比

相同点:

  • 都是分类算法,本质上都是在找最佳分类超平面;
  • 都是监督学习算法;
  • 都是判别式模型,判别模型不关心数据是怎么生成的,它只关心数据之间的差别,然后用差别来简单对给定的一个数据进行分类;
  • 都可以增加不同的正则项

不同点:

  • LR 是一个统计的方法,SVM 是一个几何的方法;
  • SVM 的处理方法是只考虑 Support Vectors,也就是和分类最相关的少数点去学习分类器。而逻辑回归通过非线性映射减小了离分类平面较远的点的权重,相对提升了与分类最相关的数据点的权重;
  • 损失函数不同:LR 的损失函数是交叉熵,SVM 的损失函数是 HingeLoss,这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重。对 HingeLoss 来说,其零区域对应的正是非支持向量的普通样本,从而所有的普通样本都不参与最终超平面的决定,这是支持向量机最大的优势所在,对训练样本数目的依赖大减少,而且提高了训练效率;
  • LR 是参数模型,SVM 是非参数模型,参数模型的前提是假设数据服从某一分布,该分布由一些参数确定(比如正态分布由均值和方差确定),在此基础上构建的模型称为参数模型;非参数模型对于总体的分布不做任何假设,只是知道总体是一个随机变量,其分布是存在的(分布中也可能存在参数),但是无法知道其分布的形式,更不知道分布的相关参数,只有在给定一些样本的条件下,能够依据非参数统计的方法进行推断。所以 LR 受数据分布影响,尤其是样本不均衡时影响很大,需要先做平衡,而 SVM 不直接依赖于分布;
  • LR 可以产生概率,SVM 不能;
  • LR 不依赖样本之间的距离,SVM 是基于距离的;
  • LR 相对来说模型更简单好理解,特别是大规模线性分类时并行计算比较方便。而 SVM 的理解和优化相对来说复杂一些,SVM 转化为对偶问题后,分类只需要计算与少数几个支持向量的距离,这个在进行复杂核函数计算时优势很明显,能够大大简化模型和计算。

2.4 与朴素贝叶斯对比

在这里插入图片描述
两个模型不同的地方在于:

  • 逻辑回归是判别式模型 p(y|x),朴素贝叶斯是生成式模型 p(x,y):判别式模型估计的是条件概率分布,给定观测变量 x 和目标变量 y 的条件模型,由数据直接学习决策函数 y=f(x) 或者条件概率分布 P(y|x) 作为预测的模型。判别方法关心的是对于给定的输入 x,应该预测什么样的输出 y;而生成式模型估计的是联合概率分布,基本思想是首先建立样本的联合概率概率密度模型 P(x,y),然后再得到后验概率 P(y|x),再利用它进行分类,生成式更关心的是对于给定输入 x 和输出 y 的生成关系;
  • 朴素贝叶斯的前提是条件独立,每个特征权重独立,所以如果数据不符合这个情况,朴素贝叶斯的分类表现就没逻辑会好了。

3. 模型细节

3.1. 为什么适合离散特征

我们在使用逻辑回归的时候很少会把数据直接丢给 LR 来训练,我们一般会对特征进行离散化处理,这样做的优势大致有以下几点:

  1. 离散后稀疏向量内积乘法运算速度更快,计算结果也方便存储,容易扩展;
  2. 离散后的特征对异常值更具鲁棒性,如 age>30 为 1 否则为 0,对于年龄为 200 的也不会对模型造成很大的干扰;
  3. LR 属于广义线性模型,表达能力有限,经过离散化后,每个变量有单独的权重,这相当于引入了非线性,能够提升模型的表达能力,加大拟合;
  4. 离散后特征可以进行特征交叉,提升表达能力,由 M+N 个变量编程 M*N 个变量,进一步引入非线形,提升了表达能力;
  5. 特征离散后模型更稳定,如用户年龄区间,不会因为用户年龄长了一岁就变化;

特征离散化以后起到了加快计算,简化模型和增加泛化能力的作用。

3.2. 为什么不用平方误差

在这里插入图片描述

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值