问题:
若一个合数的质因数分解式逐为位相加之和等于其本身逐位相加之和,则称这个数为smith数。如4937775=3×5×5×65837,而3+5+5+6+5+8+3+7=42,4+9+3+7+7+7+5=42,所以4937775是smith数,求给定一个正整数N,求大于N的最小smith数。
输入:若干个case,每个case一行代表正整数N,输入0表示结束
输出:大于N的最小smith数
输入样本:
4937774
0
输出结果:
4937775
算法分析:
从大于N的正整数开始遍历寻找smith数,若这个数是素数则舍弃,若不是素数,则分解它的质因数再逐位相加求和,如果求和结果等于N的逐位求和结果,则这个数就是大于N的最小Smith数。
程序:
#include <iostream>
#include <cstdio>
using namespace std;
int IsPrime(int n) //判断一个数是否素数
{
int i;
for (i = 2; i*i <= n; i++)
{
if (n % i == 0)
{
return 0; //若不是素数返回0
}
}
return 1;
}
int sum_digits(int n) //求一个数的逐位相加之和
{
int sum = 0;
while (n != 0)
{
sum += n%10;
n /