Growing Rectangular Spiral( 爱的魔力转圈圈~~~)

欢迎访问https://blog.csdn.net/lxt_Lucia~~

宇宙第一小仙女\(^o^)/~萌量爆表求带飞=≡Σ((( つ^o^)つ~ dalao们点个关注呗~

 

--------------------------------我只是一条可爱哒分界线-------------------------------

一、问题:

Description

Growing Rectangular Spiral A growing rectangular spiral is a connected sequence of straightline segments starting at the origin. The first segment goes right (positive x direction). The next segment goes up (positive y direction). The next segment goes left (negative x direction). The next segment goes down (negative y direction) and the sequence of directions repeats. Each segment has integer length and each segment is at least one unit longer than the previous segment. In the spiral on the right, the segment lengths are 1, 2, 4, 6, 7, 9, 11, 12, 15, 20. Write a program to determine the shortest growing rectangular spiral (in total length) that ends at a given integer point (x, y) in the first quadrant or determine that there is no such spiral.

Input

The first line of input contains a single integer P, (1 ≤ P ≤ 1000), which is the number of data sets that follow. Each data set should be processed identically and independently.

Each data set consists of a single line of input consisting of three space separated decimal integers. The first integer is the data set number. The next two integers are the x and y coordinates of the desired end point (1 ≤ x ≤ 10000, 1 ≤ y ≤ 10000). 

 

Output

For each data set there is a single line of output. If there is no spiral solution, the line consists of the data set number, a single space and ‘NO PATH’ (without the quotes). If there is a solution, the line consists of the data set number, a single space, the number of segments in the solution, a single space, followed by the lengths of the segments in order, separated by single spaces. The input data will be chosen so that no path requires more than 22 segments.

 

Sample Input

3

1 1 1

2 3 5

3 8 4

 

Sample Output

1 NO PATH

2 2 3 5

3 6 1 2 3 9 10 11

 

二、题意:

如图所示,从原点出发,按照图中所示进行螺旋转弯,每一次转弯后的长度都必须比转弯前的长度长(至少长1),现给出第一象限的点坐标,问按此方式是否可以达到该点,不能则输出“NO PATHA”(注意都是大写),若能则求出在总路径最短时的转弯次数及每段路径的长度(按递增顺序)。

 

三、思路:

看似复杂,其实无非以下3种情况:

1)x=y;由于题目每段长度都至少比前一段长1个单位,因此不可能到达。

2)x<y;即只需要两次转弯即可,先走x,再走y即可。

3)x>y;除上述两种情况外,就只得转一圈,因为下一段只要比前一段长1即可,无上限,因此如果能达到的话,转一圈完全可以到达,即转弯次数为6。在图中标出每一段的长度,为给后面几段留出空间,使总路径最短,则前三段长度必为1,2,3。此外,需要判断 “y<4”?画图后把后三段的长度表示出来,假设前一段是a+2,中间那段为x+2,则最后一段是a+y,则a+y>=a+4,所以y>=4才能到达,否则也是NON PATH。然后还有非常重要的一点就是,必须由最后一段往前推,不能由前推到最后一段,因为题目要求的是总路径最短,后者得到的不一定是最短。 

 

四、代码:

#include <cstdio>
int main()
{
    int T,k,x,y;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d %d %d",&k,&x,&y);
        printf("%d ",k);
        if(x==y)
            printf("NO PATH\n");
        else if(x<y)
            printf("2 %d %d\n",x,y);
        else if(y<4)
            printf("NO PATH\n");
        else
            printf("6 1 2 3 %d %d %d\n",x-y+5,x+2,x+3);
    }
    return 0;
}

 

--------------------------------我也是有底线的---------------------------------

宇宙第一小仙女\(^o^)/~萌量爆表求带飞=≡Σ((( つ^o^)つ~ dalao们点个关注呗~

<think>好的,我现在需要帮助用户在MATLAB中创建或绘制矩形。首先,我需要回想MATLAB中有哪些函数可以用来绘制矩形。根据用户提供的引用,提到了`drawbox`函数,但不确定是否是内置函数。可能需要检查一下。通常,MATLAB中常用的绘制矩形的函数有`rectangle`函数,可能还有`plot`或者`patch`函数。 首先,用户的问题是如何在MATLAB中创建或绘制矩形。根据引用[1]提到的`drawbox`函数,可能是一个特定函数,但我不确定它是否是MATLAB内置的。可能用户之前看到过相关的示例,但需要确认。比如,`drawbox`可能是某些工具箱中的函数,或者是用户自定义的函数。但根据常见的MATLAB知识,标准的做法是使用`rectangle`函数。 接下来,我需要考虑如何正确使用`rectangle`函数。`rectangle`函数的语法通常是`rectangle('Position', [x,y,w,h])`,其中x和y是左下角的坐标,w是宽度,h是高度。还可以设置曲率,使矩形变成圆角。例如,设置'Curvature'参数为[0,0]得到直角矩形,设置非零值则为圆角。 另外,用户提到的引用[2]中提到了最小外接矩形的主方向,这可能涉及到旋转矩形的绘制。但标准的`rectangle`函数可能不支持旋转,这时候可能需要使用`patch`或者`plot`来手动计算四个顶点的位置,然后进行绘制。例如,计算旋转后的四个顶点坐标,然后用`plot`连接这些点。 然后,我需要考虑是否需要给出不同方法的示例,比如绘制直角矩形、圆角矩形以及旋转矩形。比如,使用`rectangle`函数绘制基本矩形,用`patch`或旋转矩阵来处理旋转的情况。 同时,用户可能在引用中提到`imola`,这可能是一个拼写错误,或者指的是某个特定工具包,但我不确定。可能需要忽略这个部分,或者建议用户检查拼写,因为标准MATLAB中没有这个函数。 另外,用户引用的其他内容,如引用[3]和[4],可能和当前问题关联不大,可以忽略。重点在引用[1]提到的`drawbox`和矩形绘制。 现在,我需要组织回答的结构。首先,介绍`rectangle`函数的基本用法,然后给出示例代码,包括直角和圆角的情况。接着,如果需要绘制旋转矩形,可能需要使用坐标变换或者手动计算顶点,用`plot`或`patch`来实现。同时,可能提到图像处理工具箱中的其他函数,比如`insertShape`,如果用户有该工具箱的话。 需要注意的是,用户提到的引用[2]中关于aligned points的判定可能和矩形的方向有关,但在绘制矩形时,如果用户需要绘制带有特定角度的矩形,可能需要额外的步骤。例如,使用旋转矩阵来调整顶点位置。 总结步骤: 1. 使用`rectangle`函数绘制非旋转的矩形,包括直角和圆角。 2. 使用`patch`或`plot`绘制旋转后的矩形,需要计算顶点坐标。 3. 提供示例代码,并解释参数。 4. 可能提到其他方法,如`insertShape`或图像处理工具箱的函数。 最后,生成相关问题,比如如何设置矩形的样式、如何旋转矩形、如何检测图像中的矩形区域等。</think>在MATLAB中绘制矩形可以通过多种方法实现,以下是具体实现步骤和示例: --- ### **方法一:使用`rectangle`函数绘制直角/圆角矩形** `rectangle('Position', [x,y,w,h])`是最基础的绘制方式,支持设置边框颜色、线宽和圆角曲率: ```matlab figure; % 直角矩形(左下角坐标[2,3],宽5,高4) rectangle('Position', [2,3,5,4], 'EdgeColor', 'r', 'LineWidth', 2); % 圆角矩形(曲率设为0.5) rectangle('Position', [10,2,3,6], 'Curvature', 0.5, 'FaceColor', 'blue'); axis equal; % 保持坐标轴比例一致 ``` 参数说明: - `Position`: 矩形左下角坐标$(x,y)$、宽度$w$和高度$h$ - `Curvature`: 曲率值$[c_x,c_y]$,控制圆角程度[^1] --- ### **方法二:绘制旋转矩形(需计算顶点坐标)** 若需绘制旋转矩形,需通过旋转矩阵计算顶点位置: ```matlab % 定义矩形中心点、长宽和旋转角度 center = [5,5]; width = 4; height = 2; theta = 30; angle = deg2rad(theta); % 计算四个顶点坐标 corners = [-width/2, -height/2; width/2, -height/2; width/2, height/2; -width/2, height/2]; rot = [cos(angle), -sin(angle); sin(angle), cos(angle)]; % 旋转矩阵 rot_corners = corners * rot' + center; % 应用旋转和平移 % 绘制旋转矩形 patch(rot_corners(:,1), rot_corners(:,2), 'green', 'FaceAlpha', 0.3); axis equal; ``` --- ### **方法三:使用图像处理工具箱的`insertShape`函数** 若安装了图像处理工具箱,可直接绘制带旋转的矩形: ```matlab img = zeros(100,100); % 创建空白图像 % 绘制旋转矩形(中心坐标[50,50],长30,宽20,角度45度) img = insertShape(img, 'RotatedRectangle', [50,50,30,20,45], 'Color','red'); imshow(img); ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值