Description
某公司估计市场在第i个月对某产品的需求量为Ui,已知在第i月该产品的订货单价为di,上个月月底未销完的单位产品要付存贮费用m,假定第一月月初的库存量为零,第n月月底的库存量也为零,问如何安排这n个月订购计划,才能使成本最低?每月月初订购,订购后产品立即到货,进库并供应市场,于当月被售掉则不必付存贮费。假设仓库容量为S。
Input
第1行:n, m, S (0<=n<=50, 0<=m<=10, 0<=S<=10000)
第2行:U1 , U2 , ... , Ui , ... , Un (0<=Ui<=10000)
第3行:d1 , d2 , ..., di , ... , dn (0<=di<=100)
Output
只有1行,一个整数,代表最低成本
Sample Input
3 1 1000
2 4 8
1 2 4
2 4 8
1 2 4
Sample Output
34
【解析】
费用流……
从st 向每个月连一条容量为999999999费用为单位成本的边
每个月向ed连一条容量为需求量费用为0的边
第i个月向第i+1个月连一条容量为S费用为m的边
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct node
{
int x,y,c,d,next,other;
}a[2100];int len,last[2100];
int st,ed;
void ins(int x,int y,int c,int d)
{
int k1,k2;
len++;k1=len;
a[len].x=x;a[len].y=y;a[len].c=c;a[len].d=d;
a[len].next=last[x];last[x]=len;
len++;k2=len;
a[len].x=y;a[len].y=x;a[len].c=0;a[len].d=-d;
a[len].next=last[y];last[y]=len;
a[k1].other=k2;
a[k2].other=k1;
}
int pre[2100];
int d[2100],list[2100],head,tail;
bool v[2100];
int ans;
bool spfa()
{
for(int i=1;i<=ed;i++) d[i]=999999999;
d[st]=0;
memset(v,true,sizeof(v));v[st]=false;
list[1]=st;head=1;tail=2;
while(head!=tail)
{
int x=list[head];
for(int k=last[x];k;k=a[k].next)
{
int y=a[k].y;
if(a[k].c>0 && d[y]>d[x]+a[k].d)
{
d[y]=d[x]+a[k].d;
pre[y]=k;
if(v[y]==true)
{
v[y]=false;
list[tail++]=y;
if(tail==ed+1) tail=1;
}
}
}
head++;
if(head==ed+1) head=1;
v[x]=true;
}
if(d[ed]==999999999) return false;
return true;
}
void get()
{
int minn=999999999;
int q=ed;
while(q!=st)
{
int k=pre[q];
minn=min(minn,a[k].c);
q=a[k].x;
}
int x=ed;
while(x!=st)
{
int k=pre[x];
a[k].c-=minn;
a[a[k].other].c+=minn;
ans+=minn*a[k].d;
x=a[k].x;
}
}
int main()
{
int n,m,s;
scanf("%d%d%d",&n,&m,&s);
st=n+1;ed=st+1;
for(int i=1;i<=n;i++)
{
int x;scanf("%d",&x);
ins(i,ed,x,0);
}
for(int i=1;i<=n;i++)
{
int x;scanf("%d",&x);
ins(st,i,999999999,x);
}
for(int i=1;i<n;i++) ins(i,i+1,s,m);
ans=0;
while(spfa()) get();
printf("%d\n",ans);
return 0;
}