【数据挖掘实战】——家用电器用户行为分析及事件识别(BP神经网络)

本文通过数据挖掘技术分析家用电器用户行为,特别是热水器的使用情况,旨在识别洗浴事件。利用BP神经网络构建模型,对用水事件进行划分和识别,最终达到85.5%的识别准确率。分析涉及数据抽取、探索分析、预处理、建模和模型检验,旨在优化产品功能和营销策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🤵‍♂️ 个人主页:@Lingxw_w的个人主页

✍🏻作者简介:计算机科学与技术研究生在读
🐋 希望大家多多支持,我们一起进步!😄
如果文章对你有帮助的话,
欢迎评论 💬点赞👍🏻 收藏 📂加关注+

项目地址:Datamining_project: 数据挖掘实战项目代码

目录

一、背景和挖掘目标

1、问题背景

2、原始数据

3、挖掘目标

二、分析方法与过程

1、初步分析

2、总体流程

第一步:数据抽取

第二步:探索分析

第三步:数据的预处理

         第四步:构建专家样本

         第五步:   构建用水事件行为识别模型

基于bp神经网络的家电用户行为分析事件识别模型的构建是一种利用人工神经网络技术来分析家电用户的行为,并识别出特定事件的方法。这种模型的构建主要包括数据采集、特征提取、模型训练和测试等步骤。 首先,需要对家电用户的行为数据进行采集。可以通过安装传感器或者使用智能家居设备来收集用户与家电的交互数据,例如开关操作、功耗变化等。 然后,对采集到的数据进行特征提取。可以从数据中提取出与用户行为相关的特征,例如使用频率、使用时长、功耗水平等,以便后续的模型分析和判断。 接下来,使用bp神经网络模型进行训练。首先需要对提取到的特征进行归一化处理,以避免不同特征之间的量纲差异对模型训练的影响。然后,将处理后的特征作为输入,用户行为及事件作为目标,使用bp神经网络进行模型的训练。 最后,对训练好的模型进行测试和应用。可以使用新的家电用户数据来测试模型的准确性和可靠性,并识别出特定事件,例如用户是否离家、是否有异常使用等,以提供安全保障和智能管理。 总而言之,基于bp神经网络的家电用户行为分析事件识别模型的构建是一种通过人工神经网络技术来分析用户行为、识别事件的方法,它可以帮助家电用户实现智能化的、个性化的管理和控制,提升用户体验和居家安全性。
评论 75
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lingxw_w

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值