数据预处理总结1.5

问题:如何批量替换数据中的某个值?

sklearn中有一个类原本是专门用来填补缺失值的,不过这一功能用pandas的fillna()更简单,所以这个类被我用作替换值的技巧来使用。

import pandas as pd
from sklearn.impute import SimpleImputer

df = pd.DataFrame([[2,'aa'],[3,'ss'],[33,'nothing'],[43,'dd'],[66,'nothing']])

# 把所有'nothing'替换为'bb'
imp = SimpleImputer(missing_values='nothing', strategy='constant', fill_value='bb')
res = imp.fit_transform(df)

pd.DataFrame(res)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值