bp神经网络识别字符之提高识别率

一、bp神经网络结构

这里写图片描述

  • bp神经网络一共设置为三层,分别是输入层,隐含层,输出层,在本次识别字符改进中,将1层隐含层又细分为3层隐含层,目的在于增加输入量到输出量的训练通道,增加训练次数。
  • 当三层隐含层都设为32个节点时,识别率为60.1576%
    这里写图片描述

  • 当三层隐含层都设为48个节点时,识别率为59.9375%

Mat layerSizes = (Mat_<int>(1, 5) 
<< image_rows*image_cols, 48, 48, 48, class_mun);

这里写图片描述

  • 总结发现,通过改变隐含层的节点数目可以提高字符的识别率,每种字符的最佳节点数目都是不同的,需要不断尝试找到最佳节点数目。同时,增加样本训练集的数目也是提高字符识别率之一。
阅读更多
想对作者说点什么? 我来说一句

BP神经网络实例-以字符识别为例

2015年08月20日 47.58MB 下载

没有更多推荐了,返回首页

不良信息举报

bp神经网络识别字符之提高识别率

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭