- 博客(250)
- 收藏
- 关注
原创 bp神经网络阈值如何确定,神经网络阈值怎么设置
初始的权值和偏差一般是在0-1之间,随机选取某一0-1之间的值作为某一权值或偏差的值原因在于:1、数据预处理阶段会将所有的数据规范化到0-1之间,并且神经网络的输出也是0-1之间的向量,因此其中的网络结点值也应位于0-1中2、随机初始化的优势在于可有效避免梯度消失或梯度爆炸的问题,增加网络的稳定性。针对这个权重的随机性不确定的缺点,有人提出了用遗传算法初始化BP的初始权重和阈值的想法,提出了遗传神经网络模型,并且有人预言下一代的神经网络将会是遗传神经网络。在网络训练的过程中沿着误差减小的方向不断进行调整。
2022-10-23 12:10:13 771 1
原创 脊柱神经系统分布在哪里,脊柱神经系统分布图片
31对脊神经 分别对应于31个脊髓节段上 即8颈、12胸、5腰 5骶 1尾. 脊髓每个节段发出一对脊神经 颈丛由第1~4颈神经的前支构成 臂丛由第5-8颈神经前支和第1胸神经前支5条神经根组成 腰丛由第12胸神经前支的一部分、第1至第3腰神经前支和第4腰神经前支的一部分组成. 骶丛由腰骶干(L4、5)以及全部骶神经和尾神经的前支组成.。谷歌人工智能写作项目:神经网络伪原创脊神经脊髓每个节段发出一对脊神经,共31对(个别人32对),脊颈神经8对,胸神经12对,腰神经5对,骶神经5对及尾神经1~2对文案狗。脊神
2022-10-23 12:06:54 2543
原创 行业周期分析的主要内容,怎么分析行业生命周期
周期性行业(Cyclical Industry)是指和国内或国际经济波动相关性较强的行业,其中典型的周期性行业包括大宗原材料(如钢铁,煤炭等),工程机械,船舶等写作猫。周期性行业的特征就是产品价格呈周期性波动的,产品的市场价格是企业赢利的基础。在市场经济情况下,产品价格形成的基础是供求关系,而不是成本,成本只是产品最低价的稳定器,但不是决定的基础。周期性行业的分类:1、消费类周期性行业:包括房地产、银行、证券、保险、汽车、航空等,它们的终端客户大部分是个人消费者(银行还包括企业)。
2022-10-23 12:05:46 3291
原创 人工神经网络与遗传算法,遗传算法和神经算法
vn),1<=K<=n,的值按下面的随机方式决定:储层特征研究与预测式中:LB,UB为第K个变量的左、右邻居,函数Δ(t,y)返回(0,y)上的一个值,并使这个值随着代数t的增大而接近于0,这样选取的函数允许这个算子在算法的开始阶段一致搜索整个空间,而在算法的后阶段进行局部搜索。这种表示法的单点拟合能力较强,能够满足精度要求,但大多数情况下,还要考虑样本整体的一些性质,如方差、连续性等。神经网络的设计要用到遗传算法,遗传算法在神经网络中的应用主要反映在3个方面:网络的学习,网络的结构设计,网络的分析。
2022-10-23 12:04:39 753
原创 python神经网络编程 豆瓣,神经网络算法 python
神经网络结构具有以下三个特点:神经元之间全连接,并且为单层神经网络。每个神经元既是输入又是输出,导致得到的权重矩阵相对称,故可节约计算量。在输入的激励下,其输出会产生不断的状态变化,这个反馈过程会一直反复进行。假如Hopfield神经网络是一个收敛的稳定网络,则这个反馈与迭代的计算过程所产生的变化越来越小,一旦达到了稳定的平衡状态,Hopfield网络就会输出一个稳定的恒值。Hopfield网络可以储存一组平衡点,使得当给定网络一组初始状态时,网络通过自行运行而最终收敛于这个设计的平衡点上。当然,根据热力学
2022-10-23 12:03:33 161
原创 卷积神经网络 神经网络,卷积神经网络信号处理
卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现文案狗。[1] 它包括卷积层(alternating convolutional layer)和池层(pooling layer)。卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。
2022-10-23 12:02:26 145
原创 什么是模糊神经网络结构,模糊神经网络应用实例
分类和目标识别,还是有一些区别的写作猫。分类强调的将一组相似的样本划为一类,各类之间有明显的不同特征。而目标识别可能是针对个体的,每个个体都有自己的特征,可以将每个样本分别识别出来,例如字符识别、车牌识别等,这些就是目标识别的例子。模糊神经网络就是模糊理论同神经网络相结合的产物,它汇集了神经网络与模糊理论的优点,集学习、联想、识别、信息处理于一体。其比较适用于分类和识别,因为其模糊规则可以保证不受噪声干扰。
2022-10-22 12:45:06 1064
原创 神经网络 深度神经网络,深度神经网络知识图谱
电话机器人一般都是需要有智能对话分析功能的。自动语音识别将麦克风采集到的用户声音转化为文字的过程。自然语义理解将用户说的话转化成机器能理解的话,例如把转化成文字后的两句话“给张三打电话”和“打电话给张三”理解成同样的操作。自然语言生成 与自然语义理解相反,是将机器的语言转化人的语言,本阶段的输出是文字。语音合成 将文字合成声音并播放出来,并尽可能的模仿人类自然说话的语音语调,给人以交谈的感觉。智能客服中用到的AI技术上面从客服处理过程的角度介绍了几种技术范畴。深度神经网络深度学习是机器学习研究中的一个新的领
2022-10-22 12:43:59 1223
原创 matlab神经网络43个案例PDF,matlab神经网络预测模型
pwd=zxcv 提取码:zxcv07 Python股票量化投资课程(完结)|09课后大作业|08第八课资料|07第七课资料|06第六课资料|05第五课资料|04第四课资料|03第三课资料|02第二课资料|01第一课资料|25人工智能与量化投资(下).mp4|24人工智能与量化投资(上).mp4|23实盘交易(下).mp4|22实盘交易(中).mp4|21实盘交易(上).mp4。这么厚的书,又全是干货,才32块,很便宜了,真想要学习,推荐买一本,亚马逊,当当,京东上都有卖。这两本里面都有比较多的干货。
2022-10-22 12:42:33 854
原创 深度神经网络结构图,神经网络识别轮廓
其提取人脸图像的特征数据库中存储的特征模板进行搜索匹配,通过设定一个阈值,当相似度超过这一阈值,则把匹配得到的结果输出,人脸识别就是将待识别的人脸特征与已得到人脸特征模板进行比较,根据相似程度对人脸的身份信息进行判断。就拿苹果手机为例,苹果手机的人脸识别每次识别的特征部位都不是固定的,他是一个学习的过程,无论怎样人脸识别识别的到底是哪个部位,这完全看程序和算法的设计,并不是固定的几个位置,可能是上百个点,不断的优化。所有的梯度其实都是对最终的loss进行求导得到的,也就是标量对矩阵or向量的求导。
2022-10-21 13:22:31 491
原创 人工神经网络训练过程,神经网络训练要多久
人工神经网络(Artificial Neural Networks, ANN),一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。
2022-10-21 13:21:07 275
原创 视觉算法具体是做什么,视觉神经算法有哪些
机器视觉需要用到图像处理库,有很多免费且开源的第三方图像库可以用,如十分著名的OpenCV, 有C++,JAVA, PYTHON的版本, 它包含了很多 现成的函数,可以处理图像的形状,颜色,大小,图像文件保存,找相似图像,物体边缘(Canny edge)算法。杯子可以有不同的摆放姿势、不同的光照强度和颜色、出现在画面中的不同位置、可能有的部分被遮挡,如果按不同状态就是不同的杯子这一点来判断,那就可能误判为存在不计其数的各式各样的杯子(即外观的区别)。在后面的介绍中,这些学科间的联系将变得更加清晰。
2022-10-21 13:19:59 2835
原创 卷积神经网络的应用实例,卷积神经网络应用举例
上世纪60年代,Hubel等人通过对猫视觉皮层细胞的研究,提出了感受野这个概念,到80年代,Fukushima在感受野概念的基础之上提出了神经认知机的概念,可以看作是卷积神经网络的第一个实现网络,神经认知机将一个视觉模式分解成许多子模式(特征),然后进入分层递阶式相连的特征平面进行处理,它试图将视觉系统模型化,使其能够在即使物体有位移或轻微变形的时候,也能完成识别。卷积神经网络(Convolutional Neural Networks, CNN)是多层感知机(MLP)的变种。
2022-10-21 13:18:52 1388
原创 传统算法与神经网络算法,神经网络与算法的关系
我想这可能是你想要的神经网络吧!什么是神经网络:人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
2022-10-21 13:17:28 808
原创 神经网络模型的实际案例,神经网络模型数据处理
三、总体算法1.三层BP网络(含输入层,隐含层,输出层)权值W、偏差b初始化总体算法(1)输入参数X[N][P],S0,S1,f1[S1],S2,f2[S2];2.应用弹性BP算法(RPROP)学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b总体算法函数:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)(1)输入参数P对模式(xp,dp),p=1,2,…,M作为对已学习的输入模式的一条条记录,即让向量Tm=(t1m,t2m,…
2022-10-19 13:26:54 488
原创 神经网络提取图片特征,神经网络输入图片大小
在学习阶段应该用大量的样本进行训练学习,通过样本的大量学习对神经网络的各层网络的连接权值进行修正,使其对样本有正确的识别结果,这就像人记数字一样,网络中的神经元就像是人脑细胞,权值的改变就像是人脑细胞的相互作用的改变,神经网络在样本学习中就像人记数字一样,学习样本时的网络权值调整就相当于人记住各个数字的形象,网络权值就是网络记住的内容,网络学习阶段就像人由不认识数字到认识数字反复学习过程是一样的。在图像识别阶段,只要将图像的点阵向量作为神经网络分类器的输入,经过网络的计算,分类器的输出就是识别结果。
2022-10-19 13:25:29 194
原创 深度神经网络应用实例
深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)写作猫。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。
2022-10-19 13:24:22 319
原创 神经网络分类算法是什么,神经网络分类算法简介
The neuron --------------------------------------------------------------------------------虽然已经确认在我们的大脑中有大约50至500种不同的神经元,但它们大部份都是基于基本神经元的特别细胞。Introduction --------------------------------------------------------------------------------神经网络是新技术领域中的一个时尚词汇。
2022-10-19 13:22:55 1180
原创 深度卷积神经网络新算法,深度卷积神经网络结构
输入层卷积神经网络的输入层可以处理多维数据,常见地,一维卷积神经网络的输入层接收一维或二维数组,其中一维数组通常为时间或频谱采样;卷积神经网络的连接性:卷积神经网络中卷积层间的连接被称为稀疏连接(sparse connection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。卷积神经网络的稀疏连接具有正则化的效果,提高了网络结构的稳定性和泛化能力,避免过度拟合,同时,稀疏连接减少了权重参数的总量,有利于神经网络的快速学习,和在计算时减少内存开销。
2022-10-19 13:21:29 136
原创 开发了一个深度神经网络
深度学习 deep learning深度学习定义:欣顿(Hinton)等提出的一种研究信息的最佳表示及其获取方法的技术,在神经网络或信念网络的情况下是对基于深层结构或网络表示的输入输出间映射进行机器学习的过程。学科:计算机科学技术_人工智能_神经网络相关名词:数据挖掘 人工智能 机器学习【深度学习相关】深度学习(deep learning),属于机器学习(machine learning)的学术、工程领域研究中一个新的方向,目的是实现人工智能(artificial intelligence)的普及化。
2022-10-19 13:20:24 403
原创 神经网络中的梯度下降,神经网络梯度公式推导
图4.2 BP神经网络程序框图(3)网络训练及检验BP网络采用梯度下降法来降低网络的训练误差,考虑到基坑降水地面沉降范围内沉降量变化幅度较小的特点,训练时以训练目标取0.001为控制条件,考虑到网络的结构比较复杂,神经元个数比较多,需要适当增加训练次数和学习速率,因此初始训练次数设为10000次,学习速率取0.1,中间层的神经元传递函数采用S型正切函数tansig,传输函数采用logsig,训练函数采用trainlm,选用38组数据中的33组作为训练样本,5组作为检验样本。
2022-10-19 13:19:17 1191
原创 人工神经网络和深度神经网络
人工神经网络(Artificial Neural Network,即ANN )是从信息处理角度对人脑神经元网络进行抽象,是20世纪80年代以来人工智能领域兴起的研究热点,其本质是一种运算模型,由大量的节点(或称神经元)之间相互联接构成,在模式识别、智能机器人、自动控制、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
2022-10-19 13:17:52 647
原创 神经网络架构图片大全集,神经网络结构图绘制
关于深度神经网络模型的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。扩展资料:人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。人工神经网络采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。
2022-10-19 13:16:25 573
原创 神经网络的三种训练方法,深度神经网络训练方法
传统神经网络(这里作者主要指前向神经网络)中,采用的是back propagation的方式进行,简单来讲就是采用迭代的算法来训练整个网络,随机设定初值,计算当前网络的输出,然后根据当前输出和label之间的差去改变前面各层的参数,直到收敛(整体是一个梯度下降法)。deeplearinig就是神经网络的一类,就是解决的训练问题的深层神经网络,所以你这问题“深度学习会代替神经网络‘就不对,BP么,BP有自己的优势,也是很成熟的算法,做手写识别等等效果已经商用化了,不会被轻易替代。深度学习是无监督学习的一种。
2022-10-19 13:15:20 772
原创 人工智能神经元数学模型,人工神经元数学模型图
人工神经网络算法 “人工神经网络”(ARTIFICIAL NEURAL NETWORK,简称ANN)是在对人脑组织结构和运行机制的认识理解基础之上模拟其结构和智能行为的一种工程系统。早在本世纪40年代初期,心理学家McCulloch、数学家Pitts就提出了人工神经网络的第一个数学模型,从此开创了神经科学理论的研究时代。其后,F Rosenblatt、Widrow和J. J .Hopfield等学者又先后提出了感知模型,使得人工神经网络技术得以蓬勃发展。
2022-10-17 16:00:04 976
原创 模糊pid和神经网络pid对比,神经网络pid控制率计算
PID 调节器是一个在工业控制应用中常见的反馈回路部件,PID是以它的三种纠正算法而命名的。这三种算法都是用加法调整被控制的数值。而实际上这些加法运算大部分变成了减法运算因为被加数总是负值。以下是PID的调节作用举例:1.比例- 来控制当前,误差值和一个负常数P(表示比例)相乘,然后和预定的值相加。P只是在控制器的输出和系统的误差成比例的时候成立。这种控制器输出的变化与输入控制器的偏差成比例关系。比如说,一个电热器的控制器的比例尺范围是10°C,它的预定值是20°C。
2022-10-17 15:58:57 128
原创 一维卷积神经网络原理,hopfield神经网络原理
输出层各单元的输出阈值γj,j=1,2,...,p;输入参数好比神经元接收信号,通过一定的权值(相当于刺激神经兴奋的强度)与神经元相连,这一过程有些类似于多元线性回归,但模拟的非线性特征是通过下一步骤体现的,即通过设定一阈值(神经元兴奋极限)来确定神经元的兴奋模式,经输出运算得到输出结果。基坑降水工程的环境效应与评价方法bj=f(sj) j=1,2,...,p (4.5)(5)利用中间层的输出bj、连接权vjt和阈值γt计算输出层各单元的输出Lt,然后通过传递函数计算输出层各单元的响应Ct。
2022-10-17 15:57:51 710
原创 人工神经网络原理与实践考题,神经网络选择题
为了使尽可能多的读者通过本书对机器学习有所了解, 作者试图尽可能少地使用数学知识. 然而, 少量的概率、统计、代数、优化、逻辑知识似乎不可避免. 因此, 本书更适合大学三年级以上的理工科本科生和研究生, 以及具有类似背景的对机器学 习感兴趣的人士. 为方便读者, 本书附录给出了一些相关数学基础知识简介.全书共16 章,大致分为3 个部分:第1 部分(第1~3 章)介绍机器学习的基础知识;利用神经网络进行机器学习,则让计算机不再只是执行命令的机器,具有了一定程度上举一反三的能力。
2022-10-17 15:56:26 305
原创 神经网络算法是什么意思,神经网络属于算法吗
The neuron --------------------------------------------------------------------------------虽然已经确认在我们的大脑中有大约50至500种不同的神经元,但它们大部份都是基于基本神经元的特别细胞。Introduction --------------------------------------------------------------------------------神经网络是新技术领域中的一个时尚词汇。
2022-10-17 15:55:21 654
原创 神经网络训练时间太长,神经网络越训练越慢
贝叶斯分类器由概率统计得出,和神经网络都需要经过训练得到相应的分类的功能,如果非要说区别的话就是结构上的区别,神经网络通过高阶级数或者几何空间逼近,无数多的节点构成了非常复杂的数据相关性,而贝叶斯分类器则通过每个模式(事件几何下)中发生该事件的概率来反过来推导发生该这些事件概率后 属于那种模式,理论上神经网络是连续系统,贝叶斯不是连续的,并且贝叶斯不能处理维度间高度相关性的事件(这就好比 z=ax+by ,但y里又有x的相关因子,x和y并不独立),而神经网络没这个问题。(3)具有高速寻找优化解的能力。
2022-10-17 15:53:55 984
原创 神经网络辨识仿真软件,神经网络辨识仿真方法
在学习阶段应该用大量的样本进行训练学习,通过样本的大量学习对神经网络的各层网络的连接权值进行修正,使其对样本有正确的识别结果,这就像人记数字一样,网络中的神经元就像是人脑细胞,权值的改变就像是人脑细胞的相互作用的改变,神经网络在样本学习中就像人记数字一样,学习样本时的网络权值调整就相当于人记住各个数字的形象,网络权值就是网络记住的内容,网络学习阶段就像人由不认识数字到认识数字反复学习过程是一样的。在图像识别阶段,只要将图像的点阵向量作为神经网络分类器的输入,经过网络的计算,分类器的输出就是识别结果。
2022-10-17 15:52:30 141
原创 对抗性神经网络百度百科,对抗神经网络应用场景
对抗式神经网络 GAN让机器学会“左右互搏”GAN网络的原理本质上就是这两篇小说中主人公练功的人工智能或机器学习版本。一个网络中有两个角色,修炼的过程中左手扮演攻方,即生成器(generator),试图生成和自然世界中拟完成任务足够相似的目标;右手扮演守方,即判别器(discriminator),试图把这个假的、生成的目标和真实目标区分开来。经过反复多次双手互搏,左手右手的功力都会倍增,从而达到“舍我其谁”的目标。谷歌人工智能写作项目:神经网络伪原创我想这可能是你想要的神经网络吧!
2022-10-17 15:51:04 169
原创 人工智能 人工神经网络,人工神经网络应用实例
标准化产品,服务和应用程序,例如智能家居硬件,智能网络,服务平台,智能软件,促进智能家居产品的互联,并有效改善智能家居在照明,监控,娱乐,健康,教育,信息,安全, 等。规范从计划,采购,加工,仓储和运输到物流全过程的技术和管理要求,引入智能识别,仓储,调度,跟踪,配置等方式,以提高物流效率,增强物流信息的可视性, 并优化物流配置。虽然这项技术尚未实现,不过也表现了一种增加销量的思路,并且衍生了许多别的做法,包括送特定类型的优惠券、特殊的打折计划、有针对性的广告,在顾客住处附近的仓库存放他们可能购买的产品。
2022-10-17 15:50:00 938
原创 对抗性神经网络百度百科,对抗神经网络有什么用
对抗式神经网络 GAN让机器学会“左右互搏”GAN网络的原理本质上就是这两篇小说中主人公练功的人工智能或机器学习版本写作猫。一个网络中有两个角色,修炼的过程中左手扮演攻方,即生成器(generator),试图生成和自然世界中拟完成任务足够相似的目标;右手扮演守方,即判别器(discriminator),试图把这个假的、生成的目标和真实目标区分开来。经过反复多次双手互搏,左手右手的功力都会倍增,从而达到“舍我其谁”的目标。
2022-10-17 15:48:34 461
原创 训练神经网络的详细步骤,提高神经网络训练速度
神经网络控制技术是一项复杂的系统控制技术,一般应用在变频器的控制中,它是通过对系统的辨识、运算后对变频器进行控制的一种新技术。而且神经网络控制可以同时控制多个变频器,所以应用在多个变频器级联控制中比较合适。神经网络控制技术是一项复杂的系统控制技术,一般应用在变频器的控制中,它是通过对系统的辨识、运算后对变频器进行控制的一种新技术。而且神经网络控制可以同时控制多个变频器,所以应用在多个变频器级联控制中比较合适。
2022-10-13 15:06:58 713
原创 深度系统吃配置吗
已入门:台式机 内存32G GTX1080Ti 固态硬盘理由:这一阶段的时间,主要耗费在数据训练,数据清洗(如果有的话),一个好的GPU可以帮助你节省大量的训练时间,固态硬盘可以更快的读写文件专业级别研究者以及企业属于这个范畴,其他不说了,能多好就多好,只说下GPU,主要就是使用Titan啊,Teras啊这种级别的显卡,价格高的不要不要的,推荐使用云服务的GPU服务器吧希望以上回答可以帮到你。没有GPU也是可以的,但是会非常的慢对GPU没有要求,唯一的要求就是显卡要支持cuda(A卡泪奔。
2022-10-13 15:05:33 1367
原创 神经网络建立数学模型,神经网络数学表达式
当对系统对于设计人员来说,很透彻或者很清楚时,则一般利用数值分析,偏微分方程等数学工具建立精确的数学模型,但当对系统很复杂,或者系统未知,系统信息量很少时,建立精确的数学模型很困难时,神经网络的非线性映射能力则表现出优势,因为它不需要对系统进行透彻的了解,但是同时能达到输入与输出的映射关系,这就大大简化设计的难度。为了得到f中的未知参数的最优估计值,一般会采用最小化误差的准则,而最通常的做法就是梯度下降,到此为止都没问题,把大家困住了很多年的就是多层神经网络无法得到显式表达的梯度下降算法!
2022-10-13 15:03:03 493
原创 模糊pid和神经网络pid对比,基于神经网络的PID控制
(1)增量型算法不需做累加,计算误差后产生的计算精度问题,对控制量的计算影响较小。位置型算法用到过去的误差的累加,容易产生较大的累加误差。(2)增量型算法得出的是控制的增量,不会影响系统的工作。位置型算法的输出是控制量的全部输出,误动作影响大两个的表达式都不同可以看看百度百科。
2022-10-13 15:01:39 2852
原创 神经元网络算法的思想,神经元算法大全图解
人工神经网络算法 “人工神经网络”(ARTIFICIAL NEURAL NETWORK,简称ANN)是在对人脑组织结构和运行机制的认识理解基础之上模拟其结构和智能行为的一种工程系统。早在本世纪40年代初期,心理学家McCulloch、数学家Pitts就提出了人工神经网络的第一个数学模型,从此开创了神经科学理论的研究时代。其后,F Rosenblatt、Widrow和J. J .Hopfield等学者又先后提出了感知模型,使得人工神经网络技术得以蓬勃发展。
2022-10-13 14:59:08 1313
原创 模糊系统与神经网络的区别,什么是模糊神经网络
其实百科介绍的很详细,如“人工神经网络是模拟人脑结构的思维功能,具有较强的自学习和联想功能,人工干预少,精度较高,对专家知识的利用也较少。但缺点是它不能处理和描述模糊信息,不能很好利用已有的经验知识,特别是学习及问题的求解具有黑箱特性,其工作不具有可解释性,同时它对样本的要求较高;
2022-10-13 14:57:42 224
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人