蓝桥杯 算法提高 金明的预算方案 有依赖的背包问题


  算法提高 金明的预算方案  
时间限制:1.0s   内存限制:256.0MB
    
问题描述
  金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:
主件 附件
电脑 打印机,扫描仪
书柜 图书
书桌 台灯,文具
工作椅

  如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
  设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j_1,j_2,……,j_k,则所求的总和为:
  v[j_1]*w[j_1]+v[j_2]*w[j_2]+ …+v[j_k]*w[j_k]。(其中*为乘号)
  请你帮助金明设计一个满足要求的购物单。
输入格式
  输入文件budget.in 的第1行,为两个正整数,用一个空格隔开:
  N m
  (其中N(<32000)表示总钱数,m(<60)为希望购买物品的个数。)
  从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有3个非负整数
  v p q
  (其中v表示该物品的价格(v<10000),p表示该物品的重要度(1~5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q>0,表示该物品为附件,q是所属主件的编号)
输出格式
  输出文件budget.out只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000)。
样例输入
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
样例输出
2200

思路:这个题就是DD大牛背包九讲当中提到的那个有依赖的背包问题原型,关于背包九讲请戳这里

看过DD大牛的精彩讲解这题基本就没什么疑点了,下面是代码:

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<map>
#define ll long long
#define pi acos(-1)
#define inf 0x3f3f3f3f
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
using namespace std;
typedef pair<int,int>P;
const int MAXN=66;
int gcd(int a,int b)
{
	return b?gcd(b,a%b):a;
}
struct node{
	int v,p,v1,p1,v2,p2;
}num[MAXN];//保存每个物品及其附件
int dp[32010];
int main()
{
	int V,n,v,p,q;
	scanf("%d %d",&V,&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%d%d%d",&v,&p,&q);
		if(!q)
		{
			num[i].v=v;
			num[i].p=p;
		}
		else
		{
			if(num[q].p1)
			{
				num[q].p2=p;
				num[q].v2=v;
			}
			else
			{
				num[q].p1=p;
				num[q].v1=v;
			}
		}
	}
	for(int i=1;i<=n;i++)
	{
		if(num[i].p)
		{
			v=num[i].v;
			for(int j=V;j>=v;j--)
			{
				dp[j]=max(dp[j],dp[j-v]+v*num[i].p);
				if(num[i].p1&&j-num[i].v1>=v)
				dp[j]=max(dp[j],dp[j-v-num[i].v1]+v*num[i].p+num[i].p1*num[i].v1);
				if(num[i].p2&&j-num[i].v2>=v)
				dp[j]=max(dp[j],dp[j-v-num[i].v2]+v*num[i].p+num[i].p2*num[i].v2);
				if(num[i].p1&&num[i].p2&&j-num[i].v1-num[i].v2>=v)
				dp[j]=max(dp[j],dp[j-v-num[i].v1-num[i].v2]+v*num[i].p+num[i].v1*num[i].p1+num[i].v2*num[i].p2);
			}
		}
	 }
	printf("%d",dp[V]);
 	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值