Leetcode——翻转二叉树 / 合并二叉树 / 相同的树

1. 翻转二叉树

在这里插入图片描述

(1)递归

  • 前序,后序都行
  • 中序不行,中序会翻转两次

后序:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode invertTree(TreeNode root) {
        if(root == null)
            return null;
        TreeNode left = invertTree(root.left);
        TreeNode right = invertTree(root.right);
        root.left = right;
        root.right = left;
        return root;
    }
}

前序:

class Solution {
	public TreeNode invertTree(TreeNode root) {
        if (root == null) {
            return null;
        }

        TreeNode temp = root.left;
        root.left = root.right;
        root.right = temp;

        invertTree(root.left);
        invertTree(root.right);
        return root;
    }
}

(2)广度优先搜索

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
	public TreeNode invertTree(TreeNode root) {
		if(root==null) {
			return null;
		}
		//将二叉树中的节点逐层放入队列中,再迭代处理队列中的元素
		LinkedList<TreeNode> queue = new LinkedList<TreeNode>();
		queue.add(root);
		while(!queue.isEmpty()) {
			//每次都从队列中拿一个节点,并交换这个节点的左右子树
			TreeNode tmp = queue.poll();
			TreeNode left = tmp.left;
			tmp.left = tmp.right;
			tmp.right = left;
			//如果当前节点的左子树不为空,则放入队列等待后续处理
			if(tmp.left!=null) {
				queue.add(tmp.left);
			}
			//如果当前节点的右子树不为空,则放入队列等待后续处理
			if(tmp.right!=null) {
				queue.add(tmp.right);
			}
			
		}
		//返回处理完的根节点
		return root;
	}
}

2. 合并二叉树

在这里插入图片描述

(1)递归

对两棵树(r1,r2)进行合并,主要分为4中情况:

  • r1 和 r2 对应节点都为空,则合并后的对应节点为空。
  • r1 对应节点为空,r2 对应节点不为空,则合并后的对应节点为 r2。
  • r1 对应节点不为空,r2 对应节点为空,则合并后的对应节点为 r1。
  • r1 和 r2 对应节点都不为空,则合并后的节点为 r2+r1。

总结下递归的条件:

  • 终止条件:树 1 的节点为 null,或者树 2 的节点为 null
  • 递归函数内:将两个树的节点相加后,再赋给树 1 的节点。再递归的执行两个树的左节点,递归执行两个树的右节点
class Solution {
	public TreeNode mergeTrees(TreeNode t1, TreeNode t2) {
		if(t1==null || t2==null) {
			return t1==null? t2 : t1;
		}
		return dfs(t1,t2);
	}
	
	TreeNode dfs(TreeNode r1, TreeNode r2) {
		// 如果 r1和r2中,只要有一个是null,函数就直接返回
		if(r1==null || r2==null) {
			return r1 == null ? r2 : r1;
		}
		//让r1的值 等于  r1和r2的值累加,再递归的计算两颗树的左节点、右节点
		r1.val += r2.val;
		r1.left = dfs(r1.left,r2.left);
		r1.right = dfs(r1.right,r2.right);
		return r1;
	}
}

或者:

class Solution {
    public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
        // r1,r2中任何一个的当前节点为空,则直接将另一棵树的对应节点作为合并后的节点。
        if (root1 == null) 
        	return root2;
        if (root2 == null) 
        	return root1;
        	
        // 当两个节点都不为空时,将两个节点的合并作为合并后的节点
        TreeNode newNode = new TreeNode(root1.val + root2.val);
        
        // 合并完当前节点后,再合并其左右节点。
        newNode.left = mergeTrees(root1.left, root2.left);
        newNode.right = mergeTrees(root1.right, root2.right);
        
        return newNode;
    }
}

(2)BFS

  • 只要两颗树的左节点都不为 null,就把将他们放入队列中;同理只要两棵树的右节点都不为 null 了,也将他们放入队列中。
  • 然后我们不断的从队列中取出节点,把他们相加。
  • 如果出现 树 1 的 left 节点为 null,树 2 的 left 不为 null,直接将树 2 的 left 赋给树 1 就可以了;同理如果树 1 的 right 节点为 null,树 2 的不为 null,将树 2 的 right 节点赋给树 1。
class Solution {
	public TreeNode mergeTrees(TreeNode t1, TreeNode t2) {
	//如果 t1和t2中,只要有一个是null,函数就直接返回
		if(t1==null || t2==null) {
			return t1==null? t2 : t1;
		}
		Deque<TreeNode> queue = new LinkedList<>();
		queue.add(t1);
		queue.add(t2);
		while(queue.size()>0) {
			TreeNode r1 = queue.remove();
			TreeNode r2 = queue.remove();
			r1.val += r2.val;
			//如果r1和r2的左子树都不为空,就放到队列中
			//如果r1的左子树为空,就把r2的左子树挂到r1的左子树上
			if(r1.left!=null && r2.left!=null){
				queue.add(r1.left);
				queue.add(r2.left);
			}
			else if(r1.left==null) {
				r1.left = r2.left;
			}
			//对于右子树也是一样的
			if(r1.right!=null && r2.right!=null) {
				queue.add(r1.right);
				queue.add(r2.right);
			}
			else if(r1.right==null) {
				r1.right = r2.right;
			}
		}
		return t1;
	}
}

3. 相同的树

在这里插入图片描述

(1)递归

  • 特例处理,先比较两个根节点:
  • 如果两节点都为空,返回true;
  • 如果两节点一个为空一个不为空,返回false;
  • 如果两节点值不相同,返回false
  • 如果两个节点值相同,比较左子树和右子树是否相同,这就进入了递归
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public boolean isSameTree(TreeNode p, TreeNode q) {
        if(p == null && q == null){
            return true;
        }else if(p == null || q == null){
            return false;
        }else if(p.val == q.val){
            return isSameTree(p.left, q.left) && isSameTree(p.right, q.right);
        }
        return false;
}

(2)迭代

  • 特例处理:如果两根节点都为空,返回true;如果两根节点一个为空一个不为空,返回false
  • 用两个队列分别存储p树和q树的节点,只要两个队列都非空就进入循环
  • 循环中,先弹出两个队列的节点,如果值不同,直接返回false
  • 接下来比较俩节点的子节点情况,如果俩节点的左子节点和右子节点没有分别都存在或都不存在,返回false
  • 存在的子节点们分别入队
  • 循环结束后,只有当两个队列都为空时才会返回true
class Solution {
    public boolean isSameTree(TreeNode p, TreeNode q) {
        if(p == null && q == null){
            return true;
        }else if(p == null || q == null){
            return false;
        }
        Queue<TreeNode> queue1 = new LinkedList<>();
        Queue<TreeNode> queue2 = new LinkedList<>();
        queue1.offer(p);
        queue2.offer(q);
        while(!queue1.isEmpty() && !queue2.isEmpty()){
            TreeNode node1 = queue1.poll();
            TreeNode node2 = queue2.poll();
            if(node1.val != node2.val){
                return false;
            }
            if((node1.left != null) ^ (node2.left != null)){
                return false;
            }
            if((node1.right != null) ^ (node2.right != null)){
                return false;
            }
            if(node1.left != null){
                queue1.offer(node1.left);
            }
            if(node1.right != null){
                queue1.offer(node1.right);
            }
            if(node2.left != null){
                queue2.offer(node2.left);
            }
            if(node2.right != null){
                queue2.offer(node2.right);
            }
        }
        return queue1.isEmpty() && queue2.isEmpty();
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yawn__

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值