题目描述
将整数n分成k份,且每份不能为空,任意两个方案不相同(不考虑顺序)。
例如:n=7,k=3,下面三种分法被认为是相同的。
1,1,5;
1,5,1;
5,1,1.
问有多少种不同的分法
输入格式
n,k (6<n≤200,2≤k≤6)
输出格式
1个整数,即不同的分法。
解题思路
这题我是没有啥骚骚的办法,只能老老实实的dfs了,dfs过程中,差点就被递归诱惑了,不能忍,果断数组当栈用。
要注意一个点,就是题目中重复的不算,我们可以考虑下,怎么样算重复呢,把两组数据分别从小到大排序一遍,再一一比较,如果都一样,那么就说这两组数据重复了,但是我们如果在写代码过程中真的去排序那就完蛋了,肯定浪费时间,那么我们可以在取数的时候规定后一次取的数不小于前一次取得数,我们令
a
i
a_i
ai为第i次取的数,那么显然有
a
1
≤
a
2
≤
.
.
.
≤
a
k
a_1\le a_2\le ...\le a_k
a1≤a2≤...≤ak,且必定有
a
1
+
a
2
+
.
.
.
+
a
k
=
n
a_1+a_2+...+a_k=n
a1+a2+...+ak=n ,那这个dfs就有意思了。为了满足每次取数的时候都不小于前一次取数,第i次取数的范围是
a
i
−
1
a_{i-1}
ai−1~
(
n
−
∫
t
=
1
i
−
1
a
t
)
/
(
k
+
1
−
i
)
(n-\int_{t=1}^{i-1}a_t)/(k+1-i)
(n−∫t=1i−1at)/(k+1−i),如果取太大了,后面的数就取不到不小于前面的数了。就这么往下搜索下去,直到搜索到(k-1)层,为什么不到k层呢,注意看,
a
1
+
a
2
+
.
.
.
+
a
k
=
n
a_1+a_2+...+a_k=n
a1+a2+...+ak=n ,前面k-1个数已经确定了,那么也就确定了第k个数。
Talking is cheap,show you my code.
代码
#include<iostream>
using namespace std;
int n, k;
int ans = 0;
int arr[7];
int main() {
cin >> n >> k;
int len = 0;
int count = 0;
arr[++len] = 1;
count = 1;
while (len) {
if (len < (k-1)) {
arr[len + 1] = arr[len];
len++;
count += arr[len];
}
else {
ans++;
int flag = arr[len];
len--;
count -= flag;
while (len&&(flag == ((n - count) / (k - len)))) {
flag = arr[len];
len--;
count -= flag;
}
flag++;
if (flag<=((n-count)/(k-len))) {
arr[len + 1] = flag;
len++;
count += flag;
}
}
}
cout << ans << endl;
return 0;
}