NOIP2006能量项链-dp

题目地址:http://acm.qust.edu.cn/problem.php?cid=1168&pid=1


能量项链

时间限制: 1 Sec  内存限制: 128 MB
    

题目描述

在Mars星球上,每个Mars人都随身佩带着一串能量项链。在项链上有N颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为m,尾标记为r,后一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为(Mars单位),新产生的珠子的头标记为m,尾标记为n。 需要时,Mars人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。 例如:设N=4,4颗珠子的头标记与尾标记依次为(2,3) (3,5) (5,10) (10,2)。我们用记号⊕表示两颗珠子的聚合操作,(j⊕k)表示第j,k两颗珠子聚合后所释放的能量。则第4、1两颗珠子聚合后释放的能量为: (4⊕1)=10*2*3=60。 这一串项链可以得到最优值的一个聚合顺序所释放的总能量为 ((4⊕1)⊕2)⊕3)=10*2*3+10*3*5+10*5*10=710。

输入

第一行是一个正整数N(4≤N≤100),表示项链上珠子的个数。第二行是N个用空格隔开的正整数,所有的数均不超过1000。第i个数为第i颗珠子的头标记(1≤i≤N),当1≤i<N时,第i颗珠子的尾标记应该等于第i+1颗珠子的头标记。第N颗珠子的尾标记应该等于第1颗珠子的头标记。 至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。

输出

只有一行,是一个正整数E(E≤2.1*109),为一个最优聚合顺序所释放的总能量。

样例输入

42 3 5 10

样例输出

710

解题思路

与合并石子几乎是同样的题,可以先看合并石子理解一下 地址:http://blog.csdn.net/ly59782/article/details/52023732

简单地说,题意为:给你一串项链,项链上有n颗珠子,相邻的两颗珠子可以合并(两个合并成一个),合并的同时会放出一定的能量。不同珠子的合并所释放的能量是不同的。问:按照怎样的次序合并才能使释放的能量最多?

我们用head表示第i颗珠子的头标记,用tail表示第i颗珠子的尾标记,合并两颗相邻珠子所释放的能量为:

energy=head[i]*tail[i]*tail[i+1]

合并时不一定按输入顺序合并,与石子合并问题类似,第n次合并,可以归结到第n-1次合并,具有明显的动态规划的性质。用f[i,j]表示从第i颗珠子合并j颗珠子时产生的最大能量注意和从第i个开始合并到第j个珠子的区别,用k表示先合并k个,则有:f[i][j]=max{f[i][k]+f[i+k][j-k]+head[i]*head[i+k]*tail[i+j-1]},这里因为是环形,还需要注意i+k越界、i+j-1越界问题。

代码

#include<cstdio>
using namespace std;
const int maxn=99999999;
int f[110][110];//从第i个珠子开始,合并j个珠子,注意和从第i个开始合并到第j个珠子的区别
int head[110];
int tail[110];
int main()
{
    int n,i,j,k;
    scanf("%d",&n);

    for(i=1;i<=n;++i)
        scanf("%d",&head[i]);
    for(i=1;i<n;++i)
        tail[i]=head[i+1];
    tail[n]=head[1];

    for(j=2;j<=n;++j)//最外面的必须是长度,j表示的是长度
    {
        for(i=1;i<=n;++i)
        {
            for(k=1;k<=j-1;++k)//第i个珠子开始合并k个珠子
            {
                int next=((i+k-1)%n)+1;
                int end=(next+j-k-1)%n;//必须要取余数,假如6颗珠子,i=5,j=3,k=1,则end=7>6,要取余.

                if(next+j-k-1==n)//这里要考虑最后一个,n%n=0,但是实际上是想要tail[n]
                    end=n;

                if(f[i][j]<f[i][k]+f[next][j-k]+head[i]*head[next]*tail[end])
                    f[i][j]=f[i][k]+f[next][j-k]+head[i]*head[next]*tail[end];
            }
        }
    }
    int max=0;
    for(i=1;i<=n;++i)
        if(max<f[i][n])
            max=f[i][n];
    printf("%d",max);
    return 0;
}

展开阅读全文

没有更多推荐了,返回首页