L3-007. 天梯地图 -最短路变形

L3-007. 天梯地图

时间限制
300 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
陈越

本题要求你实现一个天梯赛专属在线地图,队员输入自己学校所在地和赛场地点后,该地图应该推荐两条路线:一条是最快到达路线;一条是最短距离的路线。题目保证对任意的查询请求,地图上都至少存在一条可达路线。

输入格式:

输入在第一行给出两个正整数N(2 <= N <=500)和M,分别为地图中所有标记地点的个数和连接地点的道路条数。随后M行,每行按如下格式给出一条道路的信息:

V1 V2 one-way length time

其中V1和V2是道路的两个端点的编号(从0到N-1);如果该道路是从V1到V2的单行线,则one-way为1,否则为0;length是道路的长度;time是通过该路所需要的时间。最后给出一对起点和终点的编号。

输出格式:

首先按下列格式输出最快到达的时间T和用节点编号表示的路线:

Time = T: 起点 => 节点1 => ... => 终点

然后在下一行按下列格式输出最短距离D和用节点编号表示的路线:

Distance = D: 起点 => 节点1 => ... => 终点

如果最快到达路线不唯一,则输出几条最快路线中最短的那条,题目保证这条路线是唯一的。而如果最短距离的路线不唯一,则输出途径节点数最少的那条,题目保证这条路线是唯一的。

如果这两条路线是完全一样的,则按下列格式输出:

Time = T; Distance = D: 起点 => 节点1 => ... => 终点

输入样例1:
10 15
0 1 0 1 1
8 0 0 1 1
4 8 1 1 1
5 4 0 2 3
5 9 1 1 4
0 6 0 1 1
7 3 1 1 2
8 3 1 1 2
2 5 0 2 2
2 1 1 1 1
1 5 0 1 3
1 4 0 1 1
9 7 1 1 3
3 1 0 2 5
6 3 1 2 1
5 3
输出样例1:
Time = 6: 5 => 4 => 8 => 3
Distance = 3: 5 => 1 => 3
输入样例2:
7 9
0 4 1 1 1
1 6 1 3 1
2 6 1 1 1
2 5 1 2 2
3 0 0 1 1
3 1 1 3 1
3 2 1 2 1
4 5 0 2 2
6 5 1 2 1
3 5
输出样例2:
Time = 3; Distance = 4: 3 => 2 => 5


/**
题意:
输出最短距离的路径和最短时间的路径
如果最快到达路线不唯一,则输出几条最快路线中最短的那条,题目保证这条路线是唯一的。
如果最短距离的路线不唯一,则输出途径节点数最少的那条,题目保证这条路线是唯一的。
题解:
两个最短路的变形。
*/

#include<bits/stdc++.h>

using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 1000+10;
typedef pair<int,int> P;

struct edge{
    int to,costt,costd;
};
vector <edge> G[maxn];

int dis[maxn],t[maxn],dist[maxn];///最短距离,最短时间,求最短时间利用到的最短距离数组
int cnt[maxn];///最短距离经过的节点数
int pred[maxn],pret[maxn];///记录最短路,最短时间
vector <int> ljt,ljd;
int s,des;

void ddijsk(){
    memset(dis,INF,sizeof(dis));
    priority_queue<P,vector<P>,greater<P> > que;
    dis[s] = 0;
    que.push(P(0,s));
    while(!que.empty()){
        P p = que.top();que.pop();
        int v = p.second, d = p.first;
        if(dis[v] < d) continue;
        for(int i = 0;i<G[v].size();++i){
            edge& e = G[v][i];
            int d2 = dis[v] + e.costd;
            if(d2 < dis[e.to]){
                dis[e.to] = d2;
                pred[e.to] = v;
                cnt[e.to] = cnt[v]+1;
                que.push(P(dis[e.to],e.to));
            }else if(d2 == dis[e.to]){
                if(cnt[e.to] > cnt[v]+1){
                    pred[e.to] = v;
                    cnt[e.to] = cnt[v]+1;
                   
                }
            }
        }
    }
}

void tdijsk(){
    memset(t,INF,sizeof(t));
    memset(dist,INF,sizeof(dist));
    priority_queue<P,vector<P>,greater<P> > que;
    t[s] = 0;
    dist[s] = 0;///注意dist不同于dis。
    que.push(P(0,s));
    while(!que.empty()){
        P p = que.top();que.pop();
        int v = p.second, tt = p.first;
        if(t[v] < tt) continue;
        for(int i = 0;i<G[v].size();++i){
            edge& e = G[v][i];
            int t2 = t[v] + e.costt;
            if(t[e.to] > t2) {
                t[e.to] = t2;
                pret[e.to] = v;
                dist[e.to] = dist[v] + e.costd;
                que.push(P(t[e.to],e.to));
            }else if(t[e.to] == t2){
                if(dist[e.to] > dist[v]+e.costd){///时间相等,更短
                    pret[e.to] = v;
                    dist[e.to] = dist[v] + e.costd;
                    que.push(P(t[e.to],e.to));
                }
            }
        }
    }
}

void dfs(int *p, int x,vector <int>& a){
    if(x==s){
        a.push_back(x);
        return;
    }
    dfs(p,p[x],a);
    a.push_back(x);
}

int main(){
    int n,m,u,v,o,l,ti;
    scanf("%d%d",&n,&m);
    for(int i = 0;i<m;++i){
        scanf("%d%d%d%d%d",&u,&v,&o,&l,&ti);
        if(o){
            G[u].push_back((edge){v,ti,l});
            continue;
        }
        G[u].push_back((edge){v,ti,l});
        G[v].push_back((edge){u,ti,l});
    }

    scanf("%d%d",&s,&des);
    ddijsk();
    tdijsk();
    dfs(pred,des,ljd);
    dfs(pret,des,ljt);
    bool f = 1;///相同
    if(ljd.size() != ljt.size()) f = 0;
    else{
        for(int i = 0;i<ljd.size();++i){
            if(ljt[i]!=ljd[i]) {
                f = 0;break;
            }
        }
    }
    if(f){
        printf("Time = %d; Distance = %d: %d",t[des],dis[des],s);
        for(int i = 1;i<ljd.size();++i)
            printf(" => %d",ljd[i]);
    }else{
        printf("Time = %d: %d",t[des],s);
        for(int i = 1;i<ljt.size();++i)
            printf(" => %d",ljt[i]);
        printf("\nDistance = %d: %d",dis[des],s);
        for(int i = 1;i<ljd.size();++i)
            printf(" => %d",ljd[i]);
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值