c++编程——常见算法01

常见的几种算法整理

  • 二分法查找/搜索
  • 贪心算法
  • Dp动态规划
  • KMP查找子串
  • Hash的使用
  • sort排序函数的使用
  • priority_queue(大堆/小堆队列使用)

二分法查找/搜索

题目:给定一个排序的数组(升序)和一个要查找的整数target,用二分法找到target第一次出现的下标(从0开始)

重点: 使用while (begin + 1 < end)来结束循环,然后对当前的begin与end进行判断

    int binarySearch(vector<int>& nums, int target) {
        int begin = 0;
        int end = nums.size() - 1;
        int middle;

        if ((target < nums[begin]) || (target > nums[end]))
            return -1;

        while (begin + 1 < end) {
            middle = (end + begin) / 2;
            if (target > nums[middle])
                begin = middle;
            else
                end = middle;
        }

        if (nums[begin] == target)
            return begin;
        if (nums[end] == target)
            return end;
        return -1;

    }

贪心算法

题目:给定一个整数数组,找到一个具有最大和的子数组,返回其最大和

思想:每次都尽可能拿到当前最大的值,对比上一次结果。

    int maxSubArray(vector<int>& nums) {
        int result = INT_MIN;
        int sum = 0;

        for (int i = 0; i < nums.size(); i++) {
            sum = sum + nums[i];
            result = max(sum, result);	//贪心到最大
            sum = max(sum, 0);	//当前的最大值
        }

        return result;
    }

Dp动态规划

题目:给定一个只含非负整数的m*n网格,找到一条从左上角到右下角的可以使数字和最小的路径

思想: grid[i][j]代表节点值, f[i][j]代表从 (0,0)到(i,j)的最短路径
f[0][0] = grid[0][0]; //初始值
f[i][0] = f[i - 1][0] + grid[i][0]; //第一列的值
f[0][i] = f[0][i - 1] + grid[0][i]; //第一行的值
f[i][j] = min(f[i - 1][j], f[i][j - 1]) + grid[i][j]; //其他节点的值
当i=m-1, j=n-1时,即为结果

    int minPathSum(vector<vector<int>>& grid) {
        if ((grid.size() == 0) || (grid[0].size() == 0))
            return 0;
        int m = grid.size();
        int n = grid[0].size();
        int f[1000][1000];
        f[0][0] = grid[0][0];
        for (int i = 1; i < m; i++) {
            f[i][0] = f[i - 1][0] + grid[i][0];
        }
        for (int i = 1; i < n; i++) {
            f[0][i] = f[0][i - 1] + grid[0][i];
        }
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                f[i][j] = min(f[i - 1][j], f[i][j - 1]) + grid[i][j];
            }
        }
        return f[m - 1][n - 1];
    }

KMP查找子串

KMP算法实现查找子串 时间复杂度O(m+n),空间复杂度O(n)
思想:KMP算法实现原理

class KMPStringSeek{
public:
    /**
     * @param source:
     * @param target:
     * @return: return the index
     */
     //KMP算法
    int strStr(string& source, string& target) {
        int i = 0, j = 0;
        int source_len = source.length()int target_len = target.length();
        vector<int> next(target_len+1);

        getNext(target, next);
        
        while (i < source_len && j < target_len)
        {
            if (j == -1 || source[i] == target[j])
            {
                i++;
                j++;
            } else {
                j = next[j];
            }
        }
        if (j == target_len)
            return i - j;
        else
            return -1;

        return 0;
    }

    //计算next数组
    void getNext(string target, vector<int>& next)
    {
        next[0] = -1;
        int i = 0, j = -1, target_len = target.length();
        while (i < target.length())
        {
            if (j == -1 || target[i] == target[j])
                next[++i] = ++j;
            else
                j = next[j];
        }
    }
};

Hash的使用

题目:给定一个整数数组,找到和为0的子数组。返回子数组的起始位置和结束位置

思想:使用hash表,利用维护前缀和来实现。优化时间复杂度,提高效率
1. 定义一个整型变量sum记录当前的前缀和,定义一个hash表,hash[sum]=i表示sum这个值是第i个位置的前缀和
2. 初始化:sum = 0, hash[0] = -1;(该定义代表数组-1的位置值为0)
3. 循环遍历这个整数数组,对于当前位置i,进行如下操作:
sum累加, 到hash里面寻找sum,找到则返回区间值,结束;否则hash[sum] = i,继续查找

    vector<int> subarraySum(vector<int>& nums) {
        unordered_map<int, int> hash;	//快速hash查找
        vector<int> result;
        int sum = 0;
        int size = nums.size();
        hash[0] = -1;

        for (int i = 0; i < size; i++) {
            sum += nums[i];
            //如果sum在hash里面,即上一个sum与这一个sum区间和为0
            if (hash.find(sum) != hash.end()) {
                result.push_back(hash[sum] + 1);
                result.push_back(i);
            }
            hash[sum] = i;
        }

        return result;
    }

sort排序函数的使用

题目:给定一系列的会议时间间隔,包括起始和结束时间[[s1,e1],[s2,e2],…(si < ei),确定一个人是否可以参加所有会议

思想:对会议起始时间s1…si进行排序,重新得到数组。然后依次顺序比较,当si<e(i-1)时,返回false。

看一下sort的定义:

void sort (RandomAccessIterator first, RandomAccessIterator last, Compare comp);
  1. 第一个参数first:是要排序的数组的起始地址。
  2. 第二个参数last:是结束的地址(最后一个数据的后一个数据的地址)
  3. 第三个参数comp是排序的方法:可以是从升序也可是降序。如果第三个参数不写,则默认的排序方法是从小到大排序。
	//固定写法,升序排列
    static bool cmp(const Interval& v1, const Interval& v2) {
        return v1.start < v2.start;		//按start进行升序排列
    }
    bool canAttendMeetings(vector<Interval>& intervals) {
        //排序
        sort(intervals.begin(), intervals.end(), cmp);

        //维护终点的最大值
        int maxend = -1;
        for (int i = 0; i < intervals.size(); i++) {
            if (intervals[i].start < maxend) {
                return false;
            }
            maxend = max(maxend, intervals[i].end);
        }
        return true;
    }

priority_queue(大堆/小堆队列使用)

题目:给定一个未排序的整数数组,找到其中位数

思想:使用小堆队列,即进入队列的数据会进行排序,队头为最大值。根据数组长度得到中位数的位置pos,向queue中push数据,达到pos大小时停止,之后做比较,一直改变最顶值即可。

    int median(vector<int>& nums) {
        // write your code here
        int size = nums.size();
        priority_queue<int> queue;
        int pos = (size + 1) / 2;

        for (int i = 0; i < size; i++) {
            if (queue.size() == pos) {
                if (queue.top() > nums[i]) {
                    queue.pop();
                    queue.push(nums[i]);
                }
            }
            else {
                queue.push(nums[i]);
            }
        }
        return queue.top();
    }

源码实现: github源码地址

大家好!现在我们将要开始一个穿越“数据结构算法和程序”这个抽象世界的特殊旅程, 以解决现实生活中的许多难题。在程序开发过程中通常需要做到如下两点:一是高效地描述数 据;二是设计一个好的算法,该算法最终可用程序来实现。要想高效地描述数据,必须具备数 据结构领域的专门知识;而要想设计一个好的算法,则需要算法设计领域的专门知识。 在着手研究数据结构算法设计方法之前,需要你能够熟练地运用C + +编程并分析程序, 这些基本的技能通常是从C + +课程以及其他分散的课程中学到的。本书的前两章旨在帮助你回 顾一下这些技能,其中的许多内容你可能已经很熟悉了。 本章我们将回顾C++ 的一些特性。因为不是针对C++ 新手,因此没有介绍诸如赋值语句、 if 语句和循环语句(如for 和w h i l e)等基本结构,而是主要介绍一些可能已经被你忽略的C + + 特性: • 参数传递方式(如传值、引用和常量引用)。 • 函数返回方式(如返值、引用和常量引用)。 • 模板函数。 • 递归函数。 • 常量函数。 • 内存分配和释放函数:n e w与d e l e t e。 • 异常处理结构:t r y, c a t c h和t h r o w。 • 类与模板类。 • 类的共享成员、保护成员和私有成员。 • 友元。 • 操作符重载。 本章中没有涉及的其他C + +特性将在后续章节中在需要的时候加以介绍。本章还给出了如 下应用程序的代码: • 一维和二维数组的动态分配与释放。 • 求解二次方程。 • 生成n 个元素的所有排列方式。 • 寻找n个元素中的最大值。 此外,本章还给出了如何测试和调试程序的一些技巧。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值