机器学习笔记:过拟合问题

过拟合问题

如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集(代价函数可能几乎为 0),但是可能会不能推广到新的数据。
下图是一个回归问题的例子:


第一个模型是一个线性模型,低度拟合,不能很好地适应我们的训练集;第三个模型是一个四次方的模型,过度拟合,虽然能非常好地适应我们的训练集但在新输入变量进行预测时可能会效果不好;而中间的模型似乎最合适。
分类问题中也存在这样的问题:


问题是,如果我们发现了过拟合问题,应该如何处理?

1. 尽量减少选取特征的数量,丢弃一些不能帮助我们正确预测的特征。
可以是手工选择保留哪些特征
或者使用一些模型选择的算法来帮忙(例如 PCA)
2. 正则化。
保留所有的特征,但是减少参数的大小( magnitude)。

 

归一化代价函数
上面的回归问题中如果我们的模型是:


我们决定要减少θ3和θ4的大小,我们要做的便是修改代价函数,在其中θ3和θ4设置一点惩罚。如下所示,比如在其前加一个很大的数1000,10000。这样做的话,我们在尝试最小化代价时也需要将这个惩罚纳入考虑中,并最终导致选择较小一些的θ3和θ4。 修改后的代价函数如下:


通过这样的代价函数选择出的θ3 和θ4对预测结果的影响就比之前要小许多
假如我们有非常多的特征,我们并不知道其中哪些特征我们要惩罚,我们将对所有的特征进行惩罚,并且让代价函数最优化的软件来选择这些惩罚的程度。这样的结果是得到了一个较为简单的能防止过拟合问题的假设:


其中λ又称为归一化参数( Regularization Parameter)。
注:根据惯例,我们不对θ0进行惩罚。
经过归一化处理的模型与原模型的可能对比如下图所示:

如果选择的归一化参数λ过大,则会把所有的参数都最小化了,导致模型变成 hθ(x)=θ0也就是上图中红色直线所示的情况,造成低度拟合。

 

归一化线性回归
归一化线性回归的代价函数为:


如果我们要使用梯度下降发令这个代价函数最小化,因为我们不对θ0进行惩罚即未对θ0进行归一化,所以梯度下降算法将分两种情形:

对上面的算法中 j=1,2,...,n 时的更新式子进行调整可得:
 可以看出,归一化线性回归的梯度下降算法的变化在于,每次都在原有算法更新规则的基础上令θ值减少了一个额外的值。
 我们同样也可以利用正规方程来求解归一化线性回归模型,方法如下所示:

图中的矩阵尺寸为 n+1*n+1

不加证明的给出当λ大于零时,是可逆矩阵。

 

归一化逻辑回归

同样对于逻辑回归,我们也给代价函数增加一个归一化的表达式,得到:

 要最小化该代价函数,通过求导,得出梯度下降算法为:

注:看上去同线性回归一样,但是知道 hθ(x)=g(θTX),所以与线性回归不同。
 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
机器学习个人笔记完整版v5.24-a4 机器学习是一门研究如何通过计算机模拟人类学习过程的学科。通过机器学习的方法,计算机可以通过数据和算法自动地从经验中学习,提高其性能。 在机器学习中,常用的学习方法包括监督学习、无监督学习和强化学习。监督学习通过给定一组已知输入和输出的训练数据,构建一个函数模型,以预测新的输入对应的输出。无监督学习则是通过对训练数据进行聚类或降维等处理,来发现数据中的潜在结构。而强化学习是通过智能体与环境的交互,通过试错学习来获得最大的奖励。 机器学习的算法和模型也有很多种,如线性回归、决策树、支持向量机、神经网络等。线性回归是一种简单而常用的模型,通过拟合一个线性函数来预测连续型变量。决策树则是一种通过一系列判定条件来进行分类的模型。而支持向量机是一种通过在不同类别间构建一个最优超平面来分类的模型。神经网络则是一种模拟生物神经系统的计算模型,通过多层次的神经元相互连接来进行学习和预测。 机器学习的应用场景非常广泛,包括自然语言处理、计算机视觉、推荐系统等。在自然语言处理方面,机器学习可以用于文本分类、情感分析等任务。而在计算机视觉领域,机器学习可以用于图像分类、目标检测等任务。在推荐系统中,机器学习可以通过对用户行为数据的分析,为用户提供个性化的推荐。 总的来说,机器学习是一门非常有前景和潜力的学科。通过不断地学习和实践,我们可以掌握各种机器学习的方法和技巧,为解决各种实际问题提供有效的解决方案。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值