机器学习基础:六种方法帮你解决模型过拟合问题

↓↓↓点击关注,回复资料,10个G的惊喜

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达5a50a925d14de960b808c8787ae344c6.jpeg

作者丨Mahitha Singirikonda 来源丨机器之心

导读

 

在机器学习中,过拟合(overfitting)会使模型的预测性能变差,通常发生在模型过于复杂的情况下,如参数过多等。本文对过拟合及其解决方法进行了归纳阐述。 

正如巴菲特所言:「近似的正确好过精确的错误。」

f1898e1abf56d4945f2e1f59956b2747.jpeg

在机器学习中,如果模型过于专注于特定的训练数据而错过了要点,那么该模型就被认为是过拟合。该模型提供的答案和正确答案相距甚远,即准确率降低。这类模型将无关数据中的噪声视为信号,对准确率造成负面影响。即使模型经过很好地训练使损失很小,也无济于事,它在新数据上的性能仍然很差。欠拟合是指模型未捕获数据的逻辑。因此,欠拟合模型具备较低的准确率和较高的损失。

8b4bdd52c38e618f294f2fa518078d67.jpeg

如何确定模型是否过拟合?

构建模型时,数据会被分为 3 类:训练集、验证集和测试集。训练数据用来训练模型;验证集用于在每一步测试构建的模型;测试集用于最后评估模型。通常数据以 80:10:10 或 70:20:10 的比率分配。

在构建模型的过程中,在每个 epoch 中使用验证数据测试当前已构建的模型,得到模型的损失和准确率,以及每个 epoch 的验证损失和验证准确率。模型构建完成后,使用测试数据对模型进行测试并得到准确率。如果准确率和验证准确率存在较大的差异,则说明该模型是过拟合的。

如果验证集和测试集的损失都很高,那么就说明该模型是欠拟合的。

如何防止过拟合

交叉验证

交叉验证是防止过拟合的好方法。在交叉验证中,我们生成多个训练测试划分(splits)并调整模型。K-折验证是一种标准的交叉验证方法,即将数据分成 k 个子集,用其中一个子集进行验证,其他子集用于训练算法。

交叉验证允许调整超参数,性能是所有值的平均值。该方法计算成本较高,但不会浪费太多数据。交叉验证过程参见下图:

e4e4a657b478073529ca9d8c533a0b06.jpeg

用更多数据进行训练

用更多相关数据训练模型有助于更好地识别信号,避免将噪声作为信号。数据增强是增加训练数据的一种方式,可以通过翻转(flipping)、平移(translation)、旋转(rotation)、缩放(scaling)、更改亮度(changing brightness)等方法来实现。

移除特征

移除特征能够降低模型的复杂性,并且在一定程度上避免噪声,使模型更高效。为了降低复杂度,我们可以移除层或减少神经元数量,使网络变小。

早停

对模型进行迭代训练时,我们可以度量每次迭代的性能。当验证损失开始增加时,我们应该停止训练模型,这样就能阻止过拟合。

下图展示了停止训练模型的时机:

af955f97dc9be351758164d3fd15f552.jpeg

正则化

正则化可用于降低模型的复杂性。这是通过惩罚损失函数完成的,可通过 L1 和 L2 两种方式完成,数学方程式如下:

3413e77bdc2499d4da5f1d2481f29fc2.jpeg

L1 惩罚的目的是优化权重绝对值的总和。它生成一个简单且可解释的模型,且对于异常值是鲁棒的。

b5b4d4db73576299309e079f0d76bf42.jpeg

L2 惩罚权重值的平方和。该模型能够学习复杂的数据模式,但对于异常值不具备鲁棒性。

这两种正则化方法都有助于解决过拟合问题,读者可以根据需要选择使用。

Dropout

Dropout 是一种正则化方法,用于随机禁用神经网络单元。它可以在任何隐藏层或输入层上实现,但不能在输出层上实现。该方法可以免除对其他神经元的依赖,进而使网络学习独立的相关性。该方法能够降低网络的密度,如下图所示:

d4e65c9f8ef37c4cecc76039d5e79a2c.jpeg

总结

过拟合是一个需要解决的问题,因为它会让我们无法有效地使用现有数据。有时我们也可以在构建模型之前,预估到会出现过拟合的情况。通过查看数据、收集数据的方式、采样方式,错误的假设,错误表征能够发现过拟合的预兆。为避免这种情况,请在建模之前先检查数据。但有时在预处理过程中无法检测到过拟合,而是在构建模型后才能检测出来。我们可以使用上述方法解决过拟合问题。

原文链接:https://mahithas.medium.com/overfitting-identify-and-resolve-df3e3fdd2860

好消息!

小白学视觉知识星球

开始面向外开放啦👇👇👇

 
 

13a30346fb6f44b9cda3ab0f0c3c8507.jpeg

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。


下载2:Python视觉实战项目52讲
在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。


下载3:OpenCV实战项目20讲
在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。


交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值