HDU-5833-高斯消元

题意:n个由2000以内素数乘积的数,问任意选至少一个数,乘积是完全平方数的个数是多少。

分析:每个数都可以由质数唯一分解,然后设取a[i]  x[i]个然后就可以列一个方程,因为是完全平方数,所以只要个数是0 (mod2)就好,xi前的系数也mod2最后解出自由变元数p  答案就是2^p

#include<bits/stdc++.h>
#define mod 1000000007
using namespace std;
bool vis[2222];
int prime[333];
int cnt;
long long v[333];
int a[333][333];
long long two[333];

void init(void) {
    memset(vis,0,sizeof vis);
    int tt=0;
    vis[1]=1;
    for(int i=2;i<=2000;i++) {
        if(vis[i]==0) {
            prime[++tt]=i;
            for(int j=i+i;j<=2000;j+=i) vis[j]=1;
        }
    }
    cnt=tt;
    two[0]=1;
    for(int i=1;i<=300;i++)
        two[i]=two[i-1]*2%mod;
}
void swapl(int x,int y,int n) {
    int tt;
    for(int i=1;i<=n;i++) {
        tt=a[x][i];
        a[x][i]=a[y][i];
        a[y][i]=tt;
    }
}
int Guass(int n) {
    int ps=0;
    for(int i=1;i<=n;i++) {
        int k=0;
        for(int j=i-ps;j<=cnt;j++) {
            if(a[j][i]==1) {
                k=j;
                break;
            }
        }
        if(k==0) {
           ps++;
           continue;
        }
        if(k!=i-ps) {
            swapl(k,i-ps,n);
        }
        for(int j=i+1-ps;j<=cnt;j++) {
            if(a[j][i]==1)
            for(int u=i;u<=n+1;u++)
                a[j][u]^=a[i-ps][u];
        }
    }
  //  cout << "ps==="<<ps << endl;
    return n-ps;
}
int main()
{
    init();
    int t,n;
    int kase=0;
    scanf("%d",&t);
    while(t--) {
        scanf("%d",&n);
        for(int i=1;i<=n;i++) {
            scanf("%lld",&v[i]);
        }
        for(int i=1;i<=n;i++) {
            for(int j=1;j<=cnt;j++) {
                a[j][i]=0;
                if(v[i]%prime[j]==0) {
                    while(v[i]%prime[j]==0) {
                        a[j][i]^=1;
                        v[i]/=prime[j];
                    }
                }
            }
        }
    /*    for(int i=1;i<=n;i++) {
            for(int j=1;j<=4;j++) {
                cout << a[i][j] << " ";
            }
            cout << endl;
        }*/
        int r=Guass(n);
   /*     cout << "------------" << endl;
        for(int i=1;i<=n;i++) {
            for(int j=1;j<=4;j++) {
                cout << a[i][j] << " ";
            }
            cout << endl;
        }*/
        int tmp=n-r;
        printf("Case #%d:\n%lld\n",++kase,(two[tmp]-1+mod)%mod);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值